→ संच क्रमांक

प्रश्नपुस्तिका क्रमांक BOOKLET NO.

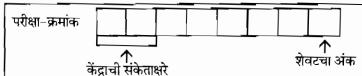
प्रश्नपुस्तिका - II

2019

एकुण प्रश्न : 100

वेळ : 2 (दोन) तास

स्थापत्य अभियांत्रिकी पेपर - 2


एकूण गुण : 200

सुचना

(1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकड्न लगेच

बद्लून घ्यावी.

आपला परीक्षा-क्रमांक ह्या चौकोनांत (2)न विसरता बॉलपेनने लिहावा.

- वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सचनेप्रमाणे न विसरता नमद करावा.
- या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमृद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमूळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पढील प्रश्नाकडे वळवे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- ं उत्तरपत्रिकेत एकदा नमुद केलेले उत्तर खोडता येणार नाही. नमुद केलेले उत्तर खोडन नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मुल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचल्ति कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनधिकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरुद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल्र

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

吻 38 सील 40 सूचनेविना पर्यवेक्षकांच्या

1.	The areas enclosed	l by the contours	in a	lake	are as	follows	:

Contour (m)

270 275 280 285 290

Area (m^2)

50 200 400 600 750

The volume of water between the contours 270 m and 290 m by trapezoidal formula

- (1) 6400 m^3
- (2) 8000 m^3
- 16000 m^3 (3)
- 24000 m^3 (4)

2. The R.L. of A is 98.75 m and the R.L. of B is 100.75 m. The horizontal distance between A and B is 10.0 m. If the contour interval is 0.25 m, the distance of 99.00 m contour line from

- (1) $0.25 \, \mathrm{m}$
- (2)1.25 m
- (3)2.0 m
- (4)2.5 m

3. When the height of signal is not the same as that of the height of instrument, then a correction applied for measurement is known as:

- (1) Curvature correction
- (2)Combined correction
- (3)Axis signal correction
- **(4)** Refraction correction

If h is the height above datum of the object, H be the flying height above datum and r be the 4. radial distance of the image of the object from principal point, then the relief displacement d is equal to:

- (1) $d = \frac{r \cdot h}{H}$ (2) $d = \frac{r \cdot H}{h}$ (3) $d = \frac{H \cdot h}{r}$ (4) $d = \frac{r}{H}$

5. In surveying optical square is used to setting out right angles. The horizon glass is placed at _ with the horizon sight and index glass is placed at an angle of an angle of _____ ___ with the index sight.

- 30° and 15° (1)
- (2)60° and 45°
- (3)90° and 75°
- (4) 120° and 105°

If an upgrade of +1.4% joins another upgrade of +0.4% and rate of change of grade is 6. 0.1% per 20 m chain, then the length of vertical curve is :

- (1)200 m
- (2)360 m
- (3)400 m
- 80 m (4)

कच्च्या कामासाठी जागा/SPACE FOR ROUGH WORK

P.T.O.

7.	A rectangular plot of land of area 0.45 hectare is represented on a map by a similar rectangle
	of area 5 cm ² . Calculate R.F. of the scale of the map. Draw a scale to read upto a single
	metre from the map.

- 1:5000(1)
- 1:8000(2)
- (3)1:9000
- 1:3000(4)
- 8. Two points A and B were fixed on opposite bank of a river. The level was setup near A and the staff readings on A and B were observed as 1.800 m and 1.300 m, respectively. Thereafter, level was setup near B and staff readings observed on B and A were found to be 0.350 m and 0.850 m, respectively. If the R.L. of A is 101.500 m, then R.L. of B is:
 - (1)102.0 m
- (2)101.0 m
- (3)100.0 m
- 100.450 m
- 9. The combined correction due to curvature and refraction in (m) for a distance of 2 kilometer is:
 - (1)0.224 m
- (2)0.1346 m
- 0.1570 m (3)
- (4)0.1750 m

- **10**. In tacheometric surveying:
 - The intercept of the staff is maximum when the staff is normal to the line of sight. (a)
 - (b) In the tangential system, the staff is kept normal to the line of sight.
 - (c) If a tacheometer is fitted with an anallatic lens, its additive constant is non zero.
 - It is more convenient to hold the staff normal to the line of sight than to hold it vertical. Select the incorrect statement/statements from the above.
 - (1)(a) only

- (a) and (b) only
- (a), (b) and (c) only (3)
- (4)(a), (b), (c) and (d) only
- 11. Generally how much amount is provided in estimate as work charged establishment?
 - (1)1 - 2%
- (2) $1 1\frac{1}{2}\%$ (3) $2 2\frac{1}{2}\%$
- In rate analysis procedure, by what % the wet volume of concrete is to be increased for 12. determining dry volume?
 - 20% (1)
- 30% (2)
- (3)52%
- (4)25%

13.		Capitalised value of a property fetching a net annual rent of ₹ 1,000 and highest rate of interest prevailing being 10% will be:												
	(1)	1,000	(2)	1,00,000	(3)	10,000	(4)	100						
14.	four		ed. The	e total centre line				for each item from lated and for cross						
	(1)	½ breadth of	item at	each junction	(2)	1 full breadth	of item	at each junction						
	(3)	2 full breadth	of item	at each junction	(4)	no deduction	s							
15.	Whi	ich value is obta	ained by	dismantling the	buildi	ing ?								
	(1)	Book Value	(2)	Distress Value	(3)	Salvage Value	e (4)	Scrap Value						
16.				timate design calc ity is called as :	ulatio	n, quantities of	work, r	ates and cost of the						
	(1)	Administrativ	e appr	oval	(2)	Technical sar	ction							
	(3)	Expenditure :	sanctior	ı	(4)	Official sanct	ion							
17.		ermine the capi rest is 5%.	tal sum	to be invested to	receiv	ve annual incon	ne of ₹1	l lakh, if the rate of						
	(1)	₹ 50 lakh	(2)	₹ 20 lakh	(3)	₹ 100 lakh	(4)	₹ 10 lakh						
18.	Whi	ch of the follow	ving me	thods is also calle	d as o	out to out and is	n to in 1	method ?						
	(1)	Long wall an	d short	wall method	(2)	Centre line m	ethod							
	(3)	Plinth area m	ethod		(4)	Cubic conten	t metho	d						
19.	Deta	ailed specificati	on for a	n item of P.C.C. (1:2:	4) should inclu	ıde follo	owing points:						
	(1)	Quantity of n	naterial,	cost of different	mater	ials, work cond	lition.							
	(2)	-		materials to be us lude, and mode o	_			onstruction method, t.						
	(3)	Work condition	ons at s	ite, BIS requireme	nts, la	abour requirem	ent and	its cost.						
	(4)	Sources of ma	aterials,	instructions by P	WD,	labour requiren	nent.							
	या का	मामाठी जागा/९१	PACE E	OR ROUGH WO	RK									
٦, ٥٥	-11 -1 11			OK KOOOM WO	****			P.T.O.						

25.

(1)

U13				(•				Α				
20.	A lo	ad of 625 T is in	nposed	on a footing of	size 2 1	n×2 m.							
	lf it	If it is to be assumed that, stress at depth "d" is spread out at an angle of 2 vertical to											
	1 ho	orizontal, find ou	it the d	epth 'd' at which	n the in	tensity of stress	will be	$\left(\frac{1}{9}\right)^{th}$ of the stre	ess				
	Ŭ	round level.	h in m	atras from the fo	Marrin	α·							
		-		etres from the fo			(1)	5					
	(1)	2 m	(2)	3 m	(3)	4 m	(4)	5 m					
21.					-			ng factor of safe	-				
	of 2	.5. It is to be ass	sumed	that stability nu	mber is	$s \frac{1}{45}$ and unit v	veight o	of soil is 18 kN/n	n^3				
	Find	l the minimum o	cohesiv	e strength (in kN	N/m^2)	which the soil s	hould h	ave.					
	Cho	ose correc t ansv	ver from	n the following	:								
	(1)	30	(2)	5	(3)	10	(4)	15					
22.	From the plate load test, the ultimate bearing capacity of plate of size $0.3 \text{ m} \times 0.3 \text{ m}$ on sand deposit is observed to be 200 kN/m^2 , the ultimate bearing capacity of a footing of size $1.5 \text{ m} \times 1.5 \text{ m}$ will be :												
	(1)	200 kN/m^2	(2)	1000 kN/m^2	(3)	500 kN/m^2	(4)	2000 kN/m^2					
23.	The	re were five inta	ct piec	es of rocks of lea	ngths 1	50 mm, 200 mm	n <i>, 7</i> 5 m	0 m in rocky stra m, 50 mm, and 2 le rock sample is	00				
	(1)	55.0%	(2)	67.5%	(3)	62.5%	(4)	40.0%					
24.				nple is 0.4. Usin	_		the esti	mated value of t	 he				
	(1)	0.5	(2)	0.7	(3)	0.3	(4)	1.0					

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

 80 kN/m^2

 20 kN/m^2

If a concentrated load Q produces a stress of $40~kN/m^2$ at a depth of 1 m, then the stress at 2 m depth and same radial distance will be :

(3) 40 kN/m^2

(4) 10 kN/m^2

26.	Amo	ount of compac	tion gre	atly affects:				
	(1)	Water conten	t and M	aximum dry de	ensity			
	(2)	Saturation of	soil					
	(3)	None of the a	bove					
	(4)	All of the abo	ve					
27.	pure	ely cohesive soi	l having	uniform cohes:	ion of 5	0 kN/sq. m upt	to 10 m	It is embedded in depth. If adhesion on component wil
	(1)	500 kN	(2)	125 kN	(3)	250 kN	(4)	200 kN
28.				_	-	e failed at 150 N strength of soi		cross-sectional area
	(1)	75 kN/m ²	(2)	375 kN/m ²	(3)	133 kN/m ²	(4)	37.5 kN/m^2
29.		allel. If the frict						eter and length, is arge in M to that o
	(1)	0.50	(2)	0.25	(3)	2.0	(4)	4.0
30.	Berr	noulli's equation	n is de r i	ved making ass	umptio	ns that :		
	(1)	The flow is u	niform a	and incompress	ible.			
	(2)	The flow is n	on-visco	us, uniform an	d steady	y.		
	(3)	The flow is st	teady, n	on-viscous, inco	mpress	ible and irrotat	ional.	
	(4)	None of the a	bove.					
31.	the a							be 3% in excess o head, the measured
	(1)	3% excess	(2)	2% less	(3)	2% excess	(4)	1.5% excess
 कच्च	या का	मासाठी जागा/SI	PACE FO	OR ROUGH W	ORK			
		·						P.T.O

32.

(1)

A uniform body 3 m long, 2 m wide and 1 m deep floats in water. If the depth of immersion

(3) 35 31 kN

(4)

For a laminar flow through circular pipe, the maximum velocity is equal to											
(1)	1.5 times the average velocity	(2)	2.0 times the average velocity								
(3)	2.5 times the average velocity	(4)	None of the above								
Coe	fficient of contraction is the ratio o	of :									
(1)	to the theoretical velocity.										
(2)	(2) loss of head in the orifice to the head of water available at the exit of the orifice.										
(3)	actual discharge through an orif	ice to	the theoretical discharge.								
(4)	area of jet at Vena contracta to t	he are	a of orifice.								
		proje	ectile moving at supersonic speed is based								
	(1) (3) Coe (1) (2) (3) (4)	 (1) 1.5 times the average velocity (3) 2.5 times the average velocity Coefficient of contraction is the ratio of (1) actual velocity of jet at Vena cort (2) loss of head in the orifice to the (3) actual discharge through an orif (4) area of jet at Vena contracta to the Model analysis of aeroplanes and 	(1) 1.5 times the average velocity (2) (3) 2.5 times the average velocity (4) Coefficient of contraction is the ratio of: (1) actual velocity of jet at Vena contracta (2) loss of head in the orifice to the head of (3) actual discharge through an orifice to (4) area of jet at Vena contracta to the area Model analysis of aeroplanes and projections.								

(2)

(4)

A dimensionless group formed with variables: 36.

Reynold Number

Mach Number

is 0.60 m, then the weight of the body is:

(2)

33.5 kN

3.53 kN

ρ (mass density), μ (dynamic viscosity), g (gravitational acceleration) and D (characteristic length) is :

(1)

(3)

Froude Number

Euler Number

 $D^{\frac{3}{2}}/\rho\mu g \qquad (2) \qquad \frac{\mu}{\rho g^{\frac{1}{2}}D^{\frac{3}{2}}} \qquad (3) \qquad \frac{\mu}{\rho g^{\frac{3}{2}}D^{\frac{3}{2}}} \qquad (4) \qquad \frac{\mu}{\rho^{\frac{1}{2}}Dg^{\frac{1}{2}}}$

In a rectangular channel, carrying a certain discharge at a depth Y_0 and Froude number F_0 , then $Y_c/Y_0=$

- (1) F_0

- (2) $F_0^{\frac{1}{2}}$ (3) $F_0^{\frac{3}{2}}$ (4) $F_0^{\frac{2}{3}}$

A				7				O)	IJ					
38.		In a reciprocating pump without air vessel, the friction head in the delivery pipe is maximum at the crank angle $\theta = ?$												
	(1)	0° (2) 90)°		(3)	135°	(4)	180°						
3 9.	An a	air vessel in the delivery si	de of a r	ecipro	ocating	g pump :								
	(1)	maintains steady dischar	rge outp	ut.										
	(2)	prevents cavitation in the	e system	l .										
•	(3)	enables suction head to l	be increa	sed.										
	(4)	enables the pump to run	at highe	er spe	ed.									
40.		double acting reciprocating crank angle is :	g pump,	there	will b	e no flow int	to or from	the air valve, whe	-n					
	(1)	39° 32' and 140° 28'		(2)	39° (32 to 140° 28								
	(3)	0° to 39° 32'		(4)	18° 3	34' to 161° 26	5 '							
41.	The	specific speed of a centrifu	ıgal pun	np ha	s the c	lime nsi ons o	f :							
	(1)	$L^{3/4} T^{-3/2}$		(2)	M ⁰ 1	$L^0 T^0$								
	(3)	$M^{-1/2} L^{1/2} T^{-1/4}$		(4)	$L^{\frac{3}{4}}$	$T^{-1/2}$								
42.	The	work saved by fitting an a	air vessel	to a	doubl	e acting recip	procating p	oump is :						
	(1)	39.2% (2) 84	4.8%		(3)	48.8%	(4)	92.3%						
43.	Mat	ch the pair :												
	(a)	Run of river plant	(i)	Larg	ge stoi	rage								
	(b)	Reservoir plant	(ii)	Wat	ter pu	mped back to	o the head	water tank						
	(c)	Pumped storage plant	(iii)	Sea	water									
	(d)	Tidal plant	(iv)	No	storag	e								
	Ans	wer Options :												

 (\mathbf{d})

(i)

(iii)

(ii)

(iv) (ii)

(iii)

(ii)

(i)

(a) (b) (c)

(i)

(ii)

(i)

(iv) (iii)

(1)

(2)

(3)

(4)

(iii)

(iv)

(iv)

44.	(1)	non-adjustable	nne m wni (2)	adjustable	i the nub are :						
	(3)	fixed	(4)	none of the above							
45 .	is 4	cylindrical bore diameter of a .00 mm. The pump runs per second is:	-		•						
	(1)	0.01256 (2) 12.56	6	(3) 1.256	(4) 0.1256						
46.	Whi	ich of the following statement	is correct	?							
	(1)	Centrifugal pump convert l	nydraulic e	nergy into mech <mark>an</mark> ic	al energy.						
	(2) Reciprocating pumps convert mechanical energy into hydraulic energy by means of centrifugal force.										
	(3)										
	(4)	Reciprocating pumps conve	ert hydraul	c energy into mecha	nnical energy.						
47 .	The	design flood commonly adop	ted in Indi	a for spillways of ma	ajor projects is the :						
	(1)	Standard Project Flood.	(2)	Flood with a Retur	n Period of 100 years.						
	(3)	Probable Maximum Flood.	(4)	Flood with a Retur	n Period of 10,000 years.						
48.	The	Thiessen polygon is :									
	(1)	a polygon obtained by joini	ng adjoinir	ng raingauge station.							
	(2)	a representative area used f	or weighin	g the observed static	on precipitation.						
	(3)	an area used in the constru	ction of de	pth-area curve.							
	(4)	the descriptive term for the	shape of h	ydrogra p h.							
49.		flow-mass curve study, the de mass curve again. This repre		drawn from a ridge is	n the curve did not intersect						
	(1)	the reservoir was not full at	the beginn	ing.							
	(2)	the storage was not adequa	te.	-							
	(+)	the demand connet be met l	hy the infla	w as the reservoir w	rill not refill						
	(3)	the demand cannot be met l	by the man	as the reserven	m not leim.						

- 50. An instantaneous unit hydrograph is a direct run-off hydrograph:
 - (1) of 1 cm magnitude due to a rainfall excess of 1 h duration.
 - (2) that occurs instantaneously due to a unit rainfall excess of duration 'D' h.
 - (3) of unit rainfall excess precipitating instantaneously over the catchment.
 - (4) occurring at any instant in a long storm.
- 51. Evaporation losses from surface of a reservoir can be reduced by sprinkling:
 - (1) DDT

- (2) Acetyl alcohol
- (3) Potassium permanganate
- (4) None of the above
- 52. Dalton's law is given as:
 - (1) $E_L = C[e_s + e_a]$

(2) $E_{I} = C[e_{a} - e_{s}]$

 $(3) \quad E_L = C[e_s - e_a]$

- (4) $E_L = C[e_s + e_w]$
- 53. Direct run-off is made up of :
 - (1) Surface run-off, prompt interflow and channel precipitation.
 - (2) Surface run-off, infiltration and evapotranspiration.
 - (3) Overland flow only.
 - (4) Rainfall and Evaporation.
- **54.** The Rainfall Intensity of Light Rain is:
 - (1) Upto 2.5 mm/Hz

(2) Upto 3.0 mm/Hz

(3) Upto 5.00 mm/Hz

- (4) Upto 7.5 mm/Hz
- 55. A plot between rainfall intensity versus time is called as:
 - (1) hydrograph
- (2) mass curve
- (3) hyetograph
- (4) isohyet
- 56. Which of the following is known as 'feeding bottle technique'?
 - (1) Drip Irrigation

(2) Sprinkler Irrigation

(3) Furrow Method

(4) None of the Above

कच्या कामासाठी जागा/SPACE FOR ROUGH WORK

P.T.O.

- 64. Lacey gave V - Q - f relation as:
 - $(1) \qquad V = \left\lceil \frac{Q f^2}{160} \right\rceil^{1/4}$

 $(2) \qquad V = \left\lceil \frac{Qf^2}{140} \right\rceil^{\frac{1}{6}}$

 $(3) \qquad V = \left\lceil \frac{fQ^2}{160} \right\rceil^{\frac{1}{4}}$

- $(4) \qquad V = \left[\frac{Qf}{140} \right]^{\frac{1}{6}}$
- Which of the following method is recommended by I.R.C. for design of flexible pavement?
 - (1)Group index method
- (2) Westergaard method

(3)CBR method

- **(4)** None of these
- 66. In case of pavement design:

Match the List - I (Type of carriageway) with List - II (Lane distribution factor) :

List - I

List - II

- (a) Undivided roads with two lane carriageway
- (i) 0.75
- (b) Undivided roads with single lane carriageway
- (ii)1.0
- (c) Divided carriageway with four lanes each
- (iii) 0.45
- (d) Undivided roads with four lane carriageway
- (iv) 0.40

Answer Options:

- (a) **(b)**
- (c) (d)
- (1)(ii)
- (iv) (iii)
- (2) (i)
- (i) (ii) (iii) (iv)
- (3) (iii)
- (ii)(iv) (i)
- (4)(iv)
- (iii)
 - (ii)(i)
- As per current Viscosity Graded (VG) bitumen specifications in India (IS 73: 2006, Third revision) the Absolute Viscosity of bitumen using vacuum capillary tube viscometer is determined at _ _____ temperature.
 - 135°C (1)
- (2)25°C
- 27°C (3)
- 60°C (4)

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

P.T.O.

U13							1	4			A			
68.	The	The super-elevation is												
	(1)	dire	ctly p	roport	ional	to the	velocity of	f vehic	les					
	(2)	inve	ersely	propo	rtiona	l to th	e velocity	of vehi	icles					
	(3)	dire	directly proportional to the width of pavement											
	(4)	inve	ersely	propo	rti oria	l to th	ie width of	f paver	ment					
69.	Mat	ch the	pair	:										
	(a)	Pene	etratio	n test		(i)	Hardness	s prope	erty of stones					
	(b)	Plate	e bear	ing te	st	(ii)	Hardness	or sol	ftness of bitum	nen				
	(c)	CBR	l test			(iii)	Penetrati	on test	for highway	material				
	(d)	Abra	asion	test		(iv)	Modulus	of sub	ograde reaction	n				
	Ans	wer (Optior	ıs :										
		(a)	(b)	(c)	(d)									
	(1)	(iii)	(iv)	(i)	(ii)									
	(2)	(ii)	(iv)	(iii)	(i)									
	(3)	(ii)	(iv)	(i)	(iii)									
	(4)	(ii)	(iii)	(i)	(iv)									
70.	 Whi	ich of	the fo	llowii	ng sta	temen	t is/are co	rrect ?						
	(a)	Pene	et rat io	n test	on bi	tumer	ı is carried	out a	t 27°C.					
	(b)	Duc	tility t	est or	bitu	nen is	carried ou	ıt at 27	7°C.					
	(c)	In so	ofteni	ng poi	nt tes	t on b	itumen, ra	te of ir	ncrease of temp	perature :	is 2°C per minute.			
	(d)	The min		f pulli	ng of	standa	ard brique	tte mo	uld specimen i	n ductilit	ty test is 15 mm pe			
	Ans	wer (Optior	ıs :										
	(1)	(a) c	only		(2)	(b) o	nly	(3)	(c) only	(4)	(a) and (d) only			
71 .				•					e 70 kmph. U		pped condition the			
	(1)		vehi				(2)		vehicles/hou					

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

3200 vehicles/hour/lane

(3)

(4)

3000 vehicles/hour/lane

4	
	_

72.	If 'R' is the radius of curvature of a hill road, the maximum grade compensation (in percentage) is equal to:												
	(1)	65/R	(2)	75/R		(3)	85/R	(4)	95/R				
7 3.		a particular ca ntroduced on		0 0									
	(1)	0.75%	(2)	1.3%		(3)	2.7%	(4)	3.25%				
74.		ase of erection arted from _	-			_	•	bout cent	re line, the	erection			
	(1)	Left end			(2)	Botl	n ends						
	(3)	Right end			(4)	Nor	ne of the abov	e					
75.		ne nature of r	iver is at	a modera	te bent	cond	ition then ma	aximum V	depth of	scour is			
	(1)	1.25 D	(2)	1.75 D		(3)	1.5 D	(4)	2 D				
76.	The	effective spar	n for main	girder in	case of	bridg	es is :						
	(1)	the distance	e between	centres of	main	girder	s.						
	(2)	the distance	e between	centres of	cross §	girder	s.						
	(3)	the distance	e between	centres of	road b	earin	gs.						
	(4)	the distance	between	centres of	bearin	ig plat	tes.						
77.	In w	which of the fo	ollowing t	ype of Ab	utment	s, wir	ig walls are n	ot provide	ed :				
	(1)	Gravity Ab	utments		(2)	U-	Abutments						
	(3)	Tee - Abutn	nents		(4)	Abu	ıtment Pier						
78.		le designing be assumed							l moving li	ive load			
	(1)	1.0 m	(2)	1.2 m		(3)	1.5 m	(4)	1.75 m				
	m æ.	मासाठी जागा/९	DACE EC)D D()[(DV							
ক্য চচ	યા વજા	नात्साठा जागा/ड	TACE FO	JA KUUU	n wo	M				P.T.O.			

	•			nimum	num straiş	ght length of	approache	es on either side of				
(1)	15 m	(2)	20 m		(3)	25 m	(4)	30 m				
		_		ose to t	ail sp	acing betwee	en two suc	cessive trains shall				
(1)	12.5 m	(2)	15.5 m		(3)	17.5 m	(4)	18.5 m				
			-				each lane	meaning the width				
(1)	Class A	(2)	Class B		(3)	Class C	(4)	Class 70 R				
The	effective linear	waterw	ay in mete	ers is gi	ven b	y :						
(1)	$L = 0.75 \text{ V}^2$											
(3)	$L = 1.811 \text{C}_{}$	Q		(4)	L = 0	CQ ²						
Which of the following is not a patented explosive available in the market for tunnelling operations ?												
(1)	PENT	(2)	RDX		(3)	TNT	(4)	NTT				
Whi	ch shape of tu	nnel is sı	iitable for	the pu	rpose	of navigation	n ?					
(1)	Circular Sha	pe		(2)	D S	hape						
(3)	Horse-shoe S	Shape		(4)	Rect	angular Sha	pe					
		_	thod of tu	nnelling	g is be	ing graduall	y replaced	by compressed air				
(1)	Needle beam	method		(2)	Belgian method							
(3)	Heading and	Bench r	nethod	(4)	Fore	naling meth	ođ					
	the (1) For not (1) The requ (1) The (1) (3) Whit oper (1) Whit (1) (3)	the bridge should (1) 15 m For IRC Class A land be less than	the bridge should be	the bridge should be (1) 15 m	the bridge should be (1) 15 m (2) 20 m For IRC Class A loading train, the nose to the notation be less than (1) 12.5 m (2) 15.5 m The width of carriageway is expressed in terrequired to accommodate one train of (1) Class A (2) Class B The effective linear waterway in meters is given as $(1) = 1.811 \text{C} \text{C}$ (2) (3) $L = 1.811 \text{C} \text{C}$ (4) Which of the following is not a patented experations? (1) PENT (2) RDX Which shape of tunnel is suitable for the pute (1) Circular Shape (2) (3) Horse-shoe Shape (4) Which of the following method of tunnelling tunnelling method? (1) Needle beam method (2)	the bridge should be (1) 15 m (2) 20 m (3) For IRC Class A loading train, the nose to tail sp not be less than (1) 12.5 m (2) 15.5 m (3) The width of carriageway is expressed in terms of required to accommodate one train of (1) Class A (2) Class B (3) The effective linear waterway in meters is given b (1) $L = 0.75 \text{ V}^2$ (2) $L = 0.75 \text{ V}^2$ (2) $L = 0.75 \text{ V}^2$ (3) Which of the following is not a patented explosion operations? (1) PENT (2) RDX (3) Which shape of tunnel is suitable for the purpose (1) Circular Shape (2) D Si (3) Horse-shoe Shape (4) Rect Which of the following method of tunnelling is betunnelling method? (1) Needle beam method (2) Belge	the bridge should be (1) 15 m (2) 20 m (3) 25 m For IRC Class A loading train, the nose to tail spacing between not be less than (1) 12.5 m (2) 15.5 m (3) 17.5 m The width of carriageway is expressed in terms of traffic lanes, required to accommodate one train of vehicles. (1) Class A (2) Class B (3) Class C The effective linear waterway in meters is given by: (1) $L = 0.75 \text{ V}^2$ (2) $L = C\sqrt{Q}$ (3) $L = 1.811 \text{ C}\sqrt{Q}$ (4) $L = CQ^2$ Which of the following is not a patented explosive available operations? (1) PENT (2) RDX (3) TNT Which shape of tunnel is suitable for the purpose of navigation (1) Circular Shape (2) D Shape (3) Horse-shoe Shape (4) Rectangular Sha Which of the following method of tunnelling is being graduall tunnelling method? (1) Needle beam method (2) Belgian method	For IRC Class A loading train, the nose to tail spacing between two such not be less than (1) 12.5 m (2) 15.5 m (3) 17.5 m (4) The width of carriageway is expressed in terms of traffic lanes, each lane required to accommodate one train of vehicles. (1) Class A (2) Class B (3) Class C (4) The effective linear waterway in meters is given by: (1) $L = 0.75 \text{ V}^2$ (2) $L = C\sqrt{Q}$ (3) $L = 1.811 \text{ C}\sqrt{Q}$ (4) $L = CQ^2$ Which of the following is not a patented explosive available in the material operations? (1) PENT (2) RDX (3) TNT (4) Which shape of tunnel is suitable for the purpose of navigation? (1) Circular Shape (2) D Shape (3) Horse-shoe Shape (4) Rectangular Shape Which of the following method of tunnelling is being gradually replaced tunnelling method? (1) Needle beam method (2) Belgian method				

86.	Which section of tunnel is also known as segmental root section tunnel?									
	(1)	D section	(2)	Egg Shaped Section						
	(3)	Circular section	(4)	Rectangular Section						
87.	Which one of the following methods of tunnelling is used in hard rocks?									
	(1)	Fore poling method	(2)	Needle beam method						
	(3)	Heading and Benching method	(4)	Shield tunnelling method						
88.	With reference to tunnelling which of the following factors, are to be considered for deciding the size of the shaft:									
	(1)	System used for hoisting	(2)	Size of the muck car						
	(3)	Quantity of muck to be lifted	(4)	Eventual use of the shaft						
89.	The	The tunnelling method that is not suitable in case of soft soil is :								
	(1)	Needle beam method	(2)	Full face method						
	(3)	Fore poling method	(4)	Liner plate method						
90.		The procedure of removal of rock protrusions by hammering immediately after the blasting is known as :								
	(1)	Mucking (2) Skimming	5	(3) Trimming (4) Scaling						
91.		Which one of the following Drift method is time consuming but provides good ventilation?								
	ven	manon?								
	vent (1)	Top Drift Method	(2)	Bottom Drift Method						
			(2) (4)	Bottom Drift Method Side Drift Method						
92.	(1) (3) If th	Top Drift Method Centre Drift Method	(4)	Side Drift Method couring velocity of 5 m/sec, which among the						
92.	(1) (3) If th	Top Drift Method Centre Drift Method e sewer is to be designed for the	(4)	Side Drift Method couring velocity of 5 m/sec, which among the						

93.	Select the incorrect pair from the following pairs of treatment unit and impurities removed, in waste water treatment system :								
	(a)	Grit chamber	- Sa	ınd, silt					
	(b)	Aeration tank - Suspended impurities							
	(c)	Skimming tank - Fat and Grease							
	(d)	Screen	- C	loth, paper					
	Ans	wer Options :							
	(1)	(b) and (c)	(2)	(a) and (c)	(3)	Only (c)	(4)	Only (b)
94.	Carl	bon monoxide is	consid	ered as mo	st po	isonou	s gas in Urban	areas b	ecause :
	(1)	It causes loss of sense of smell.							
	(2)	lt is carcinogenic in nature.							
	(3)	It reduces oxygen carrying capacity of blood.							
	(4)	(4) It may cause conjunctivitis.							
95.		The ideal pathogenic indicator used for bacterial analysis of water is exhibited by the organism :							
	(1)	Escherichia coli			(2)	Enta	moeba histoly	tica	
	(3)	Salmonella typh	ni		(4)	Vibi	o co m ma		
96.	In w	In water treatment process, aeration of water is carried out to :							
	(1)	remove hardness and chlorides from water.							
	(2)	add calcium and magnesium to water.							
	(3)	remove gases like carbon dioxide, hydrogen sulfide and to add oxygen to water.							
	(4)	remove oxygen from water and to add carbon dioxide to impart test and odour to water.							
कच्च	या का	 मासाठी जागा/SPA	CE FO	OR ROUGH		RK			

97.	The unit in which both sedimentation and digestion take place simultaneously is the:								
	(1)	Detritus tank		(2)	Imh	off tank			
	(3)	Skimming tan	k	(4)	Clar	ifier			
98.	The sag in the dissolved oxygen curve results because of DO is a function of:								
	(1)	Both addition and depletion of oxygen from the stream.							
	(2)	2) The rate of addition of oxygen to the solution.							
	(3)	3) The rate of addition of oxygen is linear, but not that of depletion.							
	(4)	(4) The rate of organic substances introduced in the process.							
99.	Alu	Alum as a coagulant is found to be effective between pH range of							
	(1)	8.0 to 10.0	(2)	8.5 to 10.5	(3)	6.5 to 8.5	(4)	7.0 to 9.0	
100.	In a	In an oxidation pond, the sewage is made non-putrescible primarily by :							
	(1)	1) Algae bacteria symbiosis only.							
	(2)	Bacterial oxidation only.							
	(3)	3) Chemical oxidation only.							
					eria syr				

- o 0 o -

सूचना — (पृष्ठ 1 वरून पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे. असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षांच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षाकक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नम्ना	प्रश्न

Pick out the correct word to fill in the blank:

Q. No. 201. I congratulate you _____ your grand success

(1) for

(2) at

(3) on

(4) about

ह्या प्रश्नाचे योग्य उत्तर ''(3) on'' असे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल. यास्तव खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक ''(3)'' हे वर्तुळ पूर्णपणे छायांकित करून दाखिवणे आवश्यक आहे.

प्र. वह. 201. 1 2 4

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तर क्रमांक हा तुम्हाला स्वतंत्ररोत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.