प्रश्नपुस्तिका क्रमांक BOOKLET No. 2018

प्रश्नपुस्तिका-II

संच क्र.

A

203005

स्थापत्य अभियांत्रिकी पेपर - 2

एकूण प्रश्न : 100 एकुण गुण : 200

वेळ: 2 (दोन) तास

सूचना

- (1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलन घ्यावी.
- (2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

- परीक्षा-क्रमांक ूर्म केंद्राची संकेताक्षरे शेवटचा अंक
- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करावा तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकिरता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नांकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच "उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील".

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनधिकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

र्घवेक्षकांच्या सूचनेविना हे सील उघडू नये

1.	stra cons stra drai	For finding out time 't ₂ ' required to achieve 50% consolidation of 1 m thick clayey strata resting on impermeable rock at bottom and sandy soil at top, a laboratory consolidation test was carried out, using 1 cm thick sample obtained from the same strata. Time "t ₁ " was taken by it to achieve 25% consolidation, under double drainage condition, in the laboratory. Choose the correct value of ratio of $\left(\frac{t_2}{t_1}\right)$ from the following:												
	(1)	4,00,00		•	16,000	` - /	(3)		0,000		4)	None	e of t	he above
2.		The distance 'D' between centers of piles with top diameter 'd' should not be les than (from practical consideration)												
	(1)	2d			3d	((3)	4d			(4)	5 d		
3.	Match List I and List II and select the correct List I (Construction Type)								ver usin	g the	cod	es gi	ven l	pelow:
			ruction	Турс	e)				List II (Suital	ble C			ım Ty	y pe)
	(a)	(Const	trench o	f a da		r		(i)	List II		off	erda		-
	(a) (b)	(Const Cut-off constru	trench o	f a da oss flo	m to be			(i)	List II (Suital Cellula	r she	off o	e rda le co	fferd	am
		Cut-off constru Shallow Sequen	trench of octed acro v foundat	f a da oss flo tion o tition	m to be wing rive	pier		(i) (ii)	List II (Suital Cellula	r shee	offe etpi	erda le co	fferd	am lam
	(b)	Cut-off constru Shallow Sequen foundat Control	trench of acted acro v foundat tial repe tion work	f a da oss flo tion o tition c	m to be owing rive f a bridge of underv	pier vater		(i) (ii) (iii)	List II (Suital Cellula Emban Single	r sheekmen	offeetpi	erda le co pe c etpile	offerd	am lam
	(b) (c)	Cut-off constru Shallow Sequen foundat Control	trench of teted acro v foundate tial repetion work of groun	f a da oss flo tion o tition c	m to be owing rive f a bridge of underv	pier vater		(i) (ii) (iii)	List II (Suital Cellula Emban Single	r sheekmen	offeetpi	erda le co pe c etpile	offerd	am dam erdam
	(b) (c)	Cut-off constru Shallow Sequen foundat Control entry in	trench of acted acro v foundate tial repetion work of groun- ato deep	f a da oss flo tion o tition a ndwat excav	m to be owing rive f a bridge of underv er to prev ation	pier vater		(i) (ii) (iii)	List II (Suital Cellula Emban Single	r sheekmen	offeetpi	erda le co pe c etpile	offerd	am dam erdam
	(b) (c) (d)	Cut-off construction Shallow Sequent foundate Control entry in (a)	trench of acted acro v foundat tial repetion work of groun to deep	f a da oss flo tion o tition c adwat excav (c)	m to be owing rive f a bridge of underv er to prevention (d) (i)	pier vater		(i) (ii) (iii)	List II (Suital Cellula Emban Single	r sheekmen	offeetpi	erda le co pe c etpile	offerd	am dam erdam
	(b) (c) (d)	Cut-off construction Shallow Sequent foundate Control entry in (a) (iv)	trench of teted acro v foundate tial repet tion work of groun to deep (b) (iii)	f a da oss flo tion o tition c ndwat excav (c) (ii)	m to be owing rive f a bridge of underv er to prevention (d) (i)	pier vater		(i) (ii) (iii)	List II (Suital Cellula Emban Single	r sheekmen	offeetpi	erda le co pe c etpile	offerd	am dam erdam

4. The void ratio and porosity of a soil sample having equal volume of solids and volume of voids are

	Void ratio	Porosit
(1)	1.0	100%
(2)	0.5	50%
(3)	1.0	50%
(4)	0.5	100%

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

5. Let E₂ and E₁ represent compaction energy deployed for compacting soil as per modified compaction test and standard compaction test, as per IS.

Choose from the following correct ratio of $\left(\frac{E_2}{E_1}\right)$:

(1) About $4\frac{1}{2}$ times

(2) About $3\frac{1}{2}$ times

(3) About 2 times

(4) None of the above

6. On the same soil sample, both Standard and Modified Proctor compaction tests are conducted in the laboratory. The values of Optimum Moisture Content (OMC) and Maximum Dry Density (MDD) for modified test compared to those for standard compaction test will respectively

(1) Increase, Increase

(2) Decrease, Increase

(3) Increase, Decrease

(4) No change, Increase

7. If the permeability, shrinkage and swelling of a compacted soil having same density on dry side of optimum moisture content is compared with compaction on wet side of optimum, the variation in these properties will be

(1) more, less, higher

(2) more, more, higher

(3) more, more, less

(4) less, less, higher

8. An embankment has a slope of 30° which was constructed with soil having $C = 30 \text{ kN/m}^2$, $\phi = 20^\circ$ and $\gamma = 15 \text{ kN/m}^3$. The height of embankment is 20 m. Using Taylor's stability no. $\frac{1}{40}$, the factor of safety with respect to cohesion is

 $(1) \quad 0.25$

 $(2) \quad \dot{2}$

(3) 4

(4) 1.5

9. The degree of consolidation depends upon

- (1) thickness of clay layer
- (2) coefficient of permeability
- (3) co-efficient of consolidation
- (4) All the above

- 10. The loss of head due to sudden expansion of a pipe is given by
 - (1) $h_L = \frac{V_1^2 V_2^2}{2g}$

(2) $h_L = \frac{0.5 \text{ V}^2}{2g}$

(3) $h_L = \frac{(V_1 - V_2)^2}{2g}$

- (4) None of the above
- 11. Bernoulli's equation is derived making assumption that
 - (1) the flow is uniform and incompressible
 - (2) the flow is non-viscous, uniform and steady
 - (3) the flow is steady, non-viscous, incompressible and irrotational
 - (4) None of the above
- 12. For the laminar flow through a circular pipe
 - (1) the maximum velocity = 1.5 times the average velocity
 - (2) the maximum velocity = 2.0 times the average velocity
 - (3) the maximum velocity = 2.5 times the average velocity
 - (4) None of the above
- 13. Depth at which specific energy is minimum is known as
 - (1) Critical depth

(2) Conjugate depth

(3) Alternate depth

- (4) Normal depth
- 14. In a rectangular channel section, if the channel depth is 2.0 m, the specific energy at critical depth is
 - (1) 3·0 m
- (2) 1.33 m
- (3) 2.5 m
- (4) 1.5 m

- 15. Which of the following statements is correct?
 - (1) Centrifugal pumps convert mechanical energy into hydraulic energy by thrust of piston
 - (2) Reciprocating pumps convert mechanical energy into hydraulic energy by means of centrifugal forces
 - (3) Centrifugal pumps convert mechanical energy into hydraulic energy by means of centrifugal force
 - (4) Reciprocating pumps convert hydraulic energy into mechanical energy

- 16. Dynamic viscosity (µ) has the dimensions as
 - MLT^{-2}
- **(2)** $m ML^{-1} \ T^{-1}$
- (3) $ML^{-1} T^{-2}$
- (4) $M^{-1}L^{-1}T^{-1}$
- 17. The submerged body will be in stable equilibrium if
 - The centre of buoyancy B is below the centre of gravity G
 - (2)The centre of buoyancy B coincides with G
 - **(3)** The centre of buoyancy B is above the metacentre M
 - (4)The centre of buoyancy B is above G
- 18. Continuity equation deals with the law of conservation of
 - **(1)** mass

momentum

(3) energy

- **(4)** None of the above
- 19. The discharge through a single-acting reciprocating pump is

 - (1) $Q = \frac{ALN}{60}$ (2) $Q = \frac{2ALN}{60}$ (3) Q = ALN (4) Q = 2ALN

where A = cross-sectional area of cylinder or piston

L = length of stroke

N = r.p.m. of the crank

- 20. A turbine is called impulse if at the inlet of the turbine
 - total energy is only kinetic energy
 - **(2)** total energy is only pressure energy
 - total energy is the sum of kinetic energy and pressure energy (3)
 - **(4)** None of the above
- 21. During suction stroke of a reciprocating pump, the separation may take place
 - at the end of suction stroke **(1)**
 - in the middle of suction stroke **(2)**
 - at the beginning of suction stroke
 - (4) None of the above
- The specific speed (N_s) of a pump is given by the expression 22.
 - $(1) \quad N_{\rm s} = \frac{N\sqrt{Q}}{H_{\rm m}^{5/4}}$

 $(2) \quad N_{\rm s} = \frac{N\sqrt{P}}{H_{\rm m}^{3/4}}$

(3) $N_s = \frac{N\sqrt{Q}}{H_{ar}^{3/4}}$

 $(4) \quad N_{\rm s} = \frac{N\sqrt{P}}{H_{\rm m}^{5/4}}$

23.	Kaplan turbine is a/an					
	(1)	impulse turbine				
	(3)	axial flow reaction turbine				

(2) radial flow impulse turbine

(4) radial flow reaction turbine

24. A turbine is a device which converts

(1) Hydraulic energy into mechanical energy

(2) Mechanical energy into hydraulic energy

(3) Kinetic energy into mechanical energy

(4) Electrical energy into mechanical energy

25. In the inlet part of the jet impinging on a Pelton bucket, the velocity of whirl V_{w1} is equal to

7

(1) absolute velocity of jet at inlet V_1

(2) relative velocity of jet at inlet V_{r1}

(3) zero

(4) None of the above

26. If the turbine has kinetic energy and pressure energy of water at its inlet, then such turbine is known as

(1) impulse turbine

(2) reaction turbine

(3) Pelton wheel turbine

(4) low head turbine

27. Which component is not provided to Pelton wheel turbine?

(1) Penstock

(2) Jet

(3) Casing

(4) Draft tube

28. The artesian aquifer is one where

(1) water surface under the ground is at atmospheric pressure

(2) water table serves as upper surface of zone of saturation

(3) water is under pressure between two impervious strata

(4) None of the above

29. Lysimeter is used to measure

(1) Infiltration

(2) Evaporation

(3) Evapotranspiration

(4) Vapour pressure

30. Horton's infiltration capacity is given as

(1) $f = f_o + [f_c - f_o] e^{-kt}$

(2) $f = f_0 - [f_c + f_0] e^{-kt}$

(3) $f = f_o - [f_c - f_o] e^{-kt}$

(4) $f = f_c + [f_o - f_c] e^{-kt}$

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

31. Weibull formula is

$$(1) \quad P = \left(\frac{m}{N+1}\right)$$

$$(2) \quad P = \left(\frac{m}{N-1}\right)$$

$$(3) \quad P = \left(\frac{N+1}{m}\right)$$

$$(4) \quad P = \left(\frac{N-1}{m}\right)$$

(where m is order number and N is number of years of record)

32. The term base flow denotes

- (1) delayed groundwater flow reaching a stream
- (2) delayed groundwater and snowmelt reaching a stream
- (3) delayed groundwater and interflow
- (4) the annual minimum flow in a stream

33. Following is **not** the method of apportionment of total cost of multipurpose reservoir:

- (1) Remaining benefit method
- (2) Use of facilities method
- (3) Equal apportionment
- (4) Direct method

34. Owing to the storage effect, the peak of the outflow hydrograph will be smaller than that of the inflow hydrograph. This reduction in peak value is known as

(1) Lag

(2) Attenuation

(3) Routing

(4) Prism storage

35. An IUH is a direct runoff hydrograph

- (1) of one cm magnitude due to rainfall excess of 1-h duration
- (2) that occurs instantaneously due to a rainfall excess of 1-h duration
- (3) of unit rainfall excess precipitating instantaneously over the catchment
- (4) occurring at any instant in long duration

36. The example of aquifuge is

(1) Clay layer

(2) Sandy layer

(3) Solid granite rocks

(4) Silty clay layer

37.		ratio of the quater actually o				e root zone of	the crop	os to the quantity				
	(1)	Water conve	yance e	fficiency	(2)	Water appli	cation e	fficiency				
	(3)	Water use ef	ficiency	,•	(4)	None of the above						
38.	In b	order strip me	thod of		e width	of strip is						
	(1)	5 – 10 m	(2)	10 – 20 m	(3)	20 – 30 m	(4)	25 – 30 m				
39.	The	duty of irriga	tion wa	ter for a given	crop is	maximum						
	(1)	on the field			(2)	at the head	of main	canal				
	(3)	at the head o	of water	course	(4)	near the dis	tributar	y				
40.	A cl	A channel designed by Lacey's theory has a mean velocity of one m/s. The silt factor										
	is u	nity. The hydr	aulic m	ean radius wi	ll be							
	(1)	2.5 m	(2)	2·0 m	(3)	1·0 m	(4)	0·5 m				
41.	In d	In design of spillway when $H_e = H_d$, the value of 'C' is										
	(1)	1.00	(2)	1.33	(3)	2.00	(4)	2·20				
42.	Hygroscopic water is defined as the											
	(1)											
	(2)	·										
	(3)	total water	content	of the soil wh	en all p	ores are filled	l with w	ater.				
	(4)	•										
43.	In c	ase of non-ava	ilabilit	y of space due	to topo	graphy, the m	ost suit	able spillway is				
	(1)	Straight dro	p spillw	ay	(2)	Shaft spillw	ay					
	(3)	Chute spillw	ay		(4)	Ogee spillw	ay					
44.	The channel after obtaining its section and longitudinal slope will be said to be in											
	The	e channel after	obtain	ing its section	and lon	gitudinal sloj	pe will b	e said to be in				
	(1)	channel after Initial regim		ing its section	and lon (2)	gitudinal sloj Pe r manent	•	e said to be in				
			e	ing its section		•	regime	e said to be in				
45.	(1) (3)	Initial regim	e e		(2) (4)	Permanent Absolute re	regime	e said to be in				
	(1) (3)	Initial regime Final regime silt load in th	e e strea		(2) (4) pend up	Permanent Absolute re	regime	e said to be in				
	(1) (3) The	Initial regime Final regime silt load in the nature of the	e streame soil in	m does <i>not</i> de	(2) (4) pend up t area	Permanent Absolute re	regime	e said to be in				
	(1) (3) The	Initial regime Final regime silt load in the nature of the	e streame soil in	m does <i>not</i> de the catchmen	(2) (4) pend up t area	Permanent Absolute re	regime	e said to be in				

46. Match the design speed recommended for various roads by IRC 86: 1983

List I

- (a) Collector roads
- (i) 30 kmph

List II

(b) Local roads

- (ii) 80 kmph
- (c) Arterial roads
- (iii) 60 kmph
- (d) Sub-arterial roads
- (iv) 50 kmph

- (a)
- **(b)**
- (c) (d)
- (1) (ii)
- (i)
- (iv) (iii)
- (2) (iii)
- (i)
- (::\
- (ii) (iv)
- (3) (iv)
- (i)
- (ii) (iii)
- (4) (ii)
- (iv)
- (iii) (i)

47. IRC recommended % values of camber for different types of road surface can be arranged in descending order of following roads:

- a. Water bound macadam road
- b. Thin bituminous surface road
- c. Cement-concrete road
- d. Earth road

Answer Options:

(1) d, b, c, a

(2) c, a, b, d

(3) d, a, b, c

(4) c, b, a, d

48. The expression for the length of a transition curve (L_s) in meters is

(1) $L_s = \frac{V^3}{CR}$

(2) $L_s = \frac{V^3}{16 \text{ CR}}$

 $(3) \quad L_s = \frac{V^3}{24 \text{ CR}}$

(4) $L_s = \frac{V^3}{46.5 \text{ CR}}$

where

C = Rate of change of radial acceleration in m/s³

R = Radius of the circular curve in metres, and

V = Speed of vehicle in kmph

49.	The (1)	design 30 km	_	lopted (2)	for design of 40 kmph	rotaries (3)	s in urban ar 50 kmph	eas of In	dia is 60 kmph			
 50.	Mat	ch the f	ollowing	 ;:	_			_ `				
		List I			List II							
	(a)	Stop s	igns		(i) Circular in shape							
	(b)	Give v	vay signs	3	(ii) Equila	ateral tr	iangle with i	ts apex j	pointing upwards			
	(c)	Speed	limit sig	ns	(iii) Octag	onal sha	ape					
	(d)	Warni	ng signs		(iv) Inverted triangle with its apex pointing do							
		(a)	(b)	(c)	(d)		Ü		Ü			
	(1)	(i)	(ii)	(iii)	,							
	(2)	(ii)	(i)	(iii)								
	(3)	(iii)	(iv)	(i)	(ii)							
	(4)	(iv)	(iii)	(ii)	(i)							
51.	The	The dowel bars are used in rigid pavements for										
	(1)	resisting tensile stresses										
	(2)	resisting bending stresses										
	(3)		_	•								
	(4)											
<u></u> 52.	Gro	Group index method of designing flexible pavement is based on										
	a.		city inde		0	•						
	b.	Shear	strength	ì								
	c.	CBR v	alue									
	d.	Percen	t fines									
	Ans	wer Op	otions :									
	(1)	a, b an	d c	(2)	b and c	(3)	a and d	(4)	a, c and d			
53.	Gra	de sepai	ation									
	a.	is for c	rossing t	traffic								
	b.				and hazard							
	c.		per optio		1.							
	d. (1)	a and			and inconver b and c		a and L	(4)	1.1			
					OUGH WORK	(3)	a and b	<u>(4)</u>	c and d P.T.O.			

54. Consider the following statements:

Collision diagram is used to

- a. study accident patterns
- b. eliminate accidents
- c. determine remedial measures
- d. make statistical analysis of accidents

Answer Options:

(1) a and b are correct

(2) a and c are correct

(3) c and d are correct

(4) b and d are correct

55. A bridge has a linear waterway of 150 metres constructed across a stream whose natural linear waterway is 200 metres. If the average flood depth is 3 metres and average flood discharge is 1200 m³/sec, the velocity of approach is

- (1) 2·0 m/sec
- (2) 2.66 m/sec
- (3) 6·0 m/sec
- (4) 8.0 m/sec

56. The width of carriageway required will depend on the intensity and volume of traffic anticipated to use the bridge.

- a. Except on minor village roads all bridges must provide for at least two lane width
- b. The minimum width of carriageway is 4.25 m for one lane bridge
- c. The minimum width of carriageway is 3.75 m for one lane bridge
- d. The minimum width of carriageway is 7.5 m for two lane bridge

Which of the statements given above is/are incorrect?

- (1) Only a
- (2) Only a and c
- (3) Only a, c and d
- (4) Only c

57. Which of the following shall be considered while designing high level bridges for buoyancy effect?

- (1) Full buoyancy for the superstructure
- (2) Full buoyancy for the abutments
- (3) Buoyancy forces due to submerged part of the substructure and foundation
- (4) Partial buoyancy for superstructure

58. The normal depth of scour for alluvial rivers is determined by Lacey's formula

 $(1) \quad \sqrt{0.475} \left(\frac{f}{Q} \right)$

 $(2) \quad 0.475 \left(\frac{\mathbf{Q}}{\mathbf{f}}\right)^3$

 $(3) \quad 0.475^{\frac{3}{4}} \sqrt{\frac{f}{Q}}$

 $(4) \quad 0.475^3 \sqrt{\frac{Q}{f}}$

	IWII	er bear	ings are			for the spa	n of						
	(1)	18 to 2	24 m	(2)	12 to 18	m (3)	6 to 12 m	(4)	Up to 6 m				
60.	The	maxim	um scou	r depth	dm for c	ondition of	flow at noses						
	(1)	1·50 d		(2)	1·75 d	(3)	2·00 d	(4)	2·75 d				
61.	For	high le	vel bridg	es, the	freeboar	d should <i>no</i>	t be less than	n					
	(1)	200 m	ım	(2)	400 mm	(3)	600 mm	(4)	800 mm				
62.	_	or bridg	ges.	ations,	the mini	mum ceme	nt content in	concrete	e is for				
	(1)	340 k				(2)	•						
	(3)	360 k	g/m ³			(4)	370 kg/m ³						
63.						e impact fa	actor, for R.C	.C. brid	ges having spans				
	(1)		45 metre	-	0.088	(3)	0.098	(4)	0.154				
64.	Which pattern of the drilling is not used for shafts?												
	(1)		al wedge		Ü	(2)	End wedge	cut					
	(3)	Vertic	al wedge	cut		. (4)	Alternate w	edge cut	t				
65.	From the economy point of view, tunnelling is advisable when the depth of open cut												
65.				point o	n view, tt	mineming in	advibable W.	iicii uiic	depth of open cut				
65.		m the e ore tha 6 m		_	12 m	(3)	18 m	(4)	24 m				
66.	is m (1)	ore tha	n	(2)					-				
	is m (1)	ore tha	n	(2)					-				
	is m (1)	6 m cch the	following	(2)	12 m	(3)	18 m	(4)	24 m				
	is m (1) Mat (a)	ore that 6 m tch the t List I	following	(2)	12 m	(3) List II Needing	18 m	(4)	24 m				
	is m (1) Mat (a) (b)	ch the List I Firm	following ground ing grour	(2)	12 m	(3) List II Needing Needing	18 m	(4) ort all re	24 m ound				
	is m (1) Mat (a) (b) (c)	ch the List I Firm Runni	following ground ing groun upporting	(2)	12 m (i) (ii) nd (ii)	(3) List II Needing Needing Needing	18 m instant supprinstant supprof instant su	(4) ort all resort for r	24 m ound oof roof				
	is m (1) Mat (a) (b)	ch the List I Firm	following ground ing groun upporting	(2)	12 m (i) (ii) nd (ii)	(3) List II Needing Needing Needing	instant supported instant supported	(4) ort all resort for r	24 m ound oof roof				
	is m (1) Mat (a) (b) (c)	ch the List I Firm Runni	following ground ing groun upporting	(2)	12 m (i) (ii) nd (ii)	(3) List II Needing Needing No need Soil star	instant supported instant supported	(4) ort all resort for r	24 m ound oof roof				
	is m (1) Mat (a) (b) (c)	ch the that I List I Firm Running Self-si	following ground ing groun upporting	(2) g: nd g groun	12 m (i) (ii) (ii) (ii) (d)	(3) List II Needing Needing No need Soil star	instant supported instant supported	(4) ort all resort for r	24 m ound oof roof				
	is m (1) Mat (a) (b) (c) (d)	ch the that I List I Firm Self-st Soft g	following ground ing groun upporting round (b)	(2) y: ad g groun	12 m (i) (ii) (ii) (ii) (d)	(3) List II Needing Needing No need Soil star	instant supported instant supported	(4) ort all resort for r	24 m ound oof roof				
	is m (1) Mat (a) (b) (c) (d)	ch the that I firm Self-st Soft g	following ground ing groun upporting round (b) (ii)	(2) y: ad g groun (c) (iii)	12 m (i) (ii) (d) (iv) (iii)	(3) List II Needing Needing No need Soil star	instant supported instant supported	(4) ort all resort for r	24 m ound oof roof				

67.		Which of the following methods is suitable for the construction of large-sized railway or highway tunnels?										
	(1)	Forep	oling me	thod			(2)	American method				
	(3)	Case	method				(4)	Full face method				
68.	Match the List I (Shape of Tunnel) with List II (Characteristics):											
		List I					Lis	st II				
	(a)	Circu	Circular section				Pro	ovides more working space				
	(b)	Horse	eshoe sect	ion		(ii)		ovides greatest cross-sectional area least perimeter				
	(c)	Egg s	hape			(iii)	Ver	rtical sides with flat floor				
	(d) Segmental cross-section				n	(iv)	Provides least cross-section area at the bottom					
		(a)	(b)	(c)	(d)							
	(1)	(ii)	(i)	(iv)	(iii)							
	(2)	(i)	(ii)	(iii)	(iv)							
	(3)	(iii)	(iv)	(i)	(ii)							
•	(4)	(iv)	(iii)	(ii)	(i)							
69.			maintain				the	tunnel, the cross section of the tunnel				
	(1)	2 m to	3 m	(2) 4	m to 6 r	n ·	(3)	5 m to 7 m (4) 8 m to 15 m				
70.	Assertion (A): Faces for attacking the excavation and construction of tunnels are opened by constructing pilot tunnels.											
	Reas	soning (locations when horizontal approach to orter than deep vertical shafts.				
	(1)	Both ((A) and (R	l) are tr	ue and (R) is th	ne co	errect explanation of A				
	(2)	(A) is	true and	(R) is fa	lse .							
	(3)	(A) is	false and	(R) is t	ue							
	(4)	Both ((A) and (R	l) are fa	lse							

71.	Which of the following methods is generally considered the most efficient system for ventilation of tunnels?										
	(1)	Driving a shaft through the tunnel									
	(2)	(2) Driving a drift through the top portion									
	(3)	Blow in method									
	(4)	Combination of blowing and exhau	sting								
72.	In case of long tunnels, the drainage system consists of sump wells which are located										
	at regular intervals of about										
	(1)	50 m to 100 m	(2)	100 m to 200 m							
	(3)	200 m to 300 m	(4)	300 m to 500 m							
73.	Air	valves or Air-relief valves are provid	ed at								
	(1)	Summits	(2)	Valleys							
	(3)	All joints	(4)	None of the above							
74.	Which of the following treatments reduces salinity of water?										
	a.	Alum coagulation, flocculation and settling									
	b.	Carbon filtration									
	c.	Reverse osmosis									
	d.	Electro dialysis									
	Ans	swer Options :									
	(1)	Only a and b									
	(2)	Only b and c									
	(3)	Only c and d									
	(4)	Only b, c and d		•							
75.	The	e minimum velocity of flow in a sewer	shoul	d be ideally							
	(1)	equal to self-cleansing velocity									
	(2)	equal to non-scouring velocity									
	(3)	less than self-cleansing velocity									
	(4)	more than non-scouring velocity									

76.	Sewer lines having difference of more than 600 mm in the water lines and invert level of two sewers are connected with a											
	(1)	Siphon	(2)	Manhole								
	(3)	Inspection chamber	(4)	Drop manhole								
77.	Gen	nerally the period chosen for a standa	rd B.(D.D. test is								
	(1)	1 day	(2)	5 days								
	(3)	8 days	(4)	20 days								
77. 78.	For	For rapid sand filter, sand should have the following specifications:										
	(1)	Effective size $0.1 - 0.5 \text{ mm}$		•								
		Uniformity co-efficient = 2 to 4										
	(2)	Effective size $0.2 - 0.5 \text{ mm}$		·								
		Uniformity co-efficient = 2 to 3										
	(3)	Effective size $0.45 - 0.7 \text{ mm}$		•								
		Uniformity co-efficient = 1.3 to 1.7										
	(4)	Effective size 0.7 – 0.9 mm										
		Uniformity co-efficient = 1 to 5										
77. 78. 80.		vaste water is disposed off into a natulation occurs in the zone of	ıral s	tream, the maximum dissolved oxygen								
	(1)	degradation	(2)	active decomposition								
	(3)	clearer water	(4)	recovery								
80.	In a	sedimentation tank design, surface o	overfl	ow rate (S.O.R.) is calculated as								
79.	(1)	Surface area/velocity of water Q/V/V	7									
	(2)	Discharge/plan area Q/B×L										
	(3)	Volume of tank/discharge V/Q										
	(4)	Surface area/settling velocity of the	parti	cle A/V _s								
81.	The	waste water treatment unit which is	insta	alled to remove floating substances like								
	grea	ase, oil, fats, waxes, etc. is										
	(1)	skimming tank	(2)	detritus tank								
	(3)	sedimentation tank	(4)	None of the above								
 कच्च्य	 ा कामा	साठी जागा / SPACE FOR ROUGH WORK										

- 82. An alidade in which one edge is bevelled is called as
 - (1) Soft edge

(2) Fiducial edge

(3) Telescopic edge

(4) Swivel edge

- 83. Contour interval is the
 - (1) vertical distance between two consecutive contours
 - (2) horizontal distance between two consecutive contours
 - (3) vertical distance between two points on the same contour
 - (4) horizontal distance between two points on the same contour
- 84. The length of a simple circular curve of radices R metres and intersection angle D degrees will be
 - (1) $R.\frac{D}{2}$

(2) $\frac{\pi}{180}$. R. $\frac{D}{2}$

(3) $\frac{\pi}{180}$. R. $\frac{D}{4}$

- (4) $\frac{\pi}{180}$. R. D
- 85. The height of an instrument is the
 - (1) Height of the instrument above the ground
 - (2) Height between ground and telescope
 - (3) Elevation of the plane of sight
 - (4) Reduced level of station
- 86. If a tachometer is fitted with an anallactic lens, then,
 - (1) Additive constant is 100 and multiplying constant is zero
 - (2) Multiplying constant is 100 and additive constant is zero
 - (3) Both additive and multiplying constants are 100
 - (4) Both multiplying and additive constants are 50
- 87. Following is constant for a contour map:
 - (1) Horizontal equivalent
 - (2) Benchmark
 - (3) Contour interval
 - (4) Topography

88. The combined correction due to curvature and refraction is given by

(1) $0.095 d^2$

(2) $0.01122 d^2$

(3) $0.06735 d^2$

(4) $0.572 d^2$

(where d is in km)

89. Reiteration method is also called as

(1) Method of series

(2) Repetition method

(3) Direction method

(4) Both (1) and (3)

90. The expression for sensitivity of the bubble tube (α) can be taken as, $\underline{\ }$

where

n = No. of divisions

s = Net staff reading

d = Distance

R = Radius of curvature

l =Length of one division

- (1) $\alpha = \frac{s}{nd} \times 206265$ seconds
- (2) $\alpha = \frac{d}{ns} \times 206265$ seconds

(3) $\alpha = \frac{nlD}{R}$ radians

(4) $\alpha = \frac{s}{nR} \cdot \frac{l}{D}$

91. Closing error in theodolite traverse survey is given as

- (1) $e = \sqrt{(\sum L^2 + \sum D^2)^2}$
- (2) $e = \sqrt{(\sum \mathbf{L})^2 + (\sum \mathbf{D})^2}$

(3) $e = \sqrt{\sum L + \sum D}$

(4) $e = \sqrt{(\sum L)^2 - (\sum D)^2}$

92. If the length of 16 mm diameter bar is 10 m, then its weight is

(1) 16.5 kg

(2) 16.9 kg

(3) 15.8 kg

(4) 16.2 kg

93. Security deposit is

- (1) deposited at the time of filling tender
- (2) deposited by the contractor whose tender is accepted
- (3) deposited at the time of opening tenders
- (4) deposited for fair competition

94.		In order to compute the quantities of R.C.C. beams, lengths of beams are measured to the										
	(1)	nearest millimetre	(2)	nearest half centimetre								
	(3)	nearest centimetre	(4)	nearest inch								
95.	In case of which type of contract, unbalanced tender is not possible?											
	(1)	Open tender	(2)	Item rate contract								
	(3)	Percentage rate contract	(4)	Unit price contract								
96.	Which of the following types of contract is used for execution of large works financed											
		oublic bodies or the government?	(0)									
	(1)	Item rate contract	(2)	Percentage rate contract								
	(3)	Cost plus type contract	(4)	Target contract								
97.	Assertion (A): Earnest money deposit is usually 1% to 2% of the total estimated cost of the work.											
	Reasoning (R) : Earnest money deposit prevents unnecessary and unhealt competition.											
	(1)	Both (A) and (R) are true	(2)	Both (A) and (R) are false								
	(3)	(A) is true and (R) is false	(4)	(A) is false and (R) is true								
98.		nation for cement requirement in to per structure) recommended by C.B.		four-storey R.C.C. framed building								
	(1)	0·153 A + 0·57	(2)	0·145 A + 0·54								
	(3)	0·182 A – 0·35	(4)	2·26 A + 66·8								
	(wh	ere A is plinth area in sq. mt)										
99.	While submitting tender by three envelope method, which envelope contains rates/amount offered by the tenderer?											
	(1)	Envelop : 3	(2)	Envelope nos : 1 and 2								
	(3)	Envelope: 1	(4)	None of the above								
100.		length of L-bend for Tor steel to be	provid	led at each end of the reinforcing bars								
	is	4										
	(1)	12 times diameter	(2)	6 times diameter								
	(3)	3 times diameter	(4)	150 mm								
कच्चा	कामार	नाठी जागा / SPACE FOR ROUGH WORK		P.T.O.								

सूचना - (पृष्ठ 1 वरून पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82" यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतःबरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना 🤉	प्रश्न
---------	--------

Pick o	ut the	correct	word	to f	ill in	the	blank	•
1 10E 0	uu uuc	COLLCCO	** **	VO I	*** ***		$\mathbf{v}_{\mathbf{i}}\mathbf{u}_{\mathbf{i}\mathbf{v}}$	•

Q. No. 201.	I congratulate you	your grand success.	
	(1) for	(2) at	
	(3) on	(4) about	
	ह्या प्रश्नाचे योग्य उत्तर ''(3) on''	असे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)''	होईल. यास्तव
	जनसीलामामो मुख्य हर १०० समोरील १	उन्तर क्रमांक "②" हे वर्तल पूर्णपूर्ण छारांकित र	करून टाखिये

স. ক্ল. 201. 1 2 • 4

आवश्यक आहे.

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. हांकिरता फक्त काळ्या शार्डचे बॉलपेन वापरावे, पेन्सिल वा शार्डचे पेन वापरू नये.