ती पेपर - 1	एकूण प्रश्न : 100 एकूण गुण : 200
-	
ची उत्तरे लिहिण्यास सुरुवात करण्यापू भूज काही टोष भावलल्याम ही एफ	र्वी या प्रश्नपुस्तिकेत सर्व प्रस्तिका समवेशकांकदन
परीक्षा-क्रमांक	
	ी शेवटचा अंक
नगी उत्तरपत्रिकेवरील सूचनेप्रमाणे न वि	वेसरता नमूद करावा. 📃
नूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नम् ग्मोर छायांकित करून दर्शविला जाईल शाईचे पेन वापरू नये. <u>ोत.</u> घाईमुळे चुका होणार नाहीत या आहे पण एखादा प्रश्न कठीण व गपर्यंत पोहोचल्यानंतर वेळ शिल्लक	द करावा. अशा प्रकारे त याची काळजी घ्यावी. ची दक्षता घेऊनच शक्य ाटल्यास त्यावर वेळ न राहिल्यास कठीण म्हणून और ि
केलेले उत्तर खोडून नव्याने उत्तर दिव	ल्यास ते तपासले जाणार 🖉
ा उत्तरपत्रिकेतील योग्य उत्तरांनाच ग	ण दिले जातील. तसेच
न्या चार उत्तरांपैकी सर्वात योग्य उ चार चुकीच्या उत्तरांसाठी एका प्रश्न	त्व उत्तरपात्रयतः पनूद ाचे गुण वजा करण्यात
न्या चार उत्तरांपैकी सर्वात योग्य उ चार चुकीच्या उत्तरांसाठी एका प्रश्न	तित्व उत्तरवात्रयता पनूद ति गुण वजा करण्यात हि
	ते पेपर – 1 वी उत्तरे लिहिण्यास सुरुवात करण्यापू अन्य काही दोष आढळल्यास ही प्रश्न परीक्षा-क्रमांक ते त्राची संकेताक्षरे मागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न ि केंद्राची संकेताक्षरे मागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न ि रूत त्यांना 1, 2, 3 आणि 4 असे क्र रूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नम् यूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नम् रूपने छायांकित करून दर्शविला जाईल शाईचे पेन वापरू नये. ति. घाईमुळे चुका होणार नाहीत या आहे पण एखादा प्रश्न कठीण व ापर्यंत पोहोचल्यानंतर वेळ शिल्लक केलेले उत्तर खोडून नव्याने उत्तर दिव ा उत्तरपत्रिकेतील योग्य उत्तरांनाच गु

•

कच्च्या कामासाठी जागा/SPACE FOR ROUGH WORK

.

1. Determine the degree of static and kinematic indeterminacy of the frame structure as shown in the figure.

2. A cantilever truss as shown in the figure is subjected to a horizontal load 'P' at joint A. The total number of zero force members in the truss is

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

P.T.O.

3. A continuous beam ABC is as shown in the figure. End supports are simple (i.e., A and C) and span AB = span BC = L. There is a concentrated load 'W' at the centre of the span AB while no load over the span BC. E_j is same for both the spans. What is the moment at the continuous support B?

(1)
$$-\frac{WL^3}{16}$$

(2) $-\frac{WL^2}{32}$
(3) $-\frac{3WL^2}{32}$
(4) $-\frac{3WL^2}{16}$

4. A beam ABC is supported and loaded as shown in the figure. Find the support reactions at A and B. (Neglect horizontal reaction at A)

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

5. A simple truss ABC is supported at A and B as shown in the figure. If a point load (P) along BC is applied at joint C in horizontal direction, then what will be the vertical deflection at C? Assume same C/5 area and same materials (i.e., A, E, I same for all members).

- 6. In a fixed beam of span 'L' subjected to a central concentrated load 'W', the fixed end moment and moment at midspan are respectively
 - (1) $\frac{WL}{12}$ and $\frac{WL}{6}$ (3) $\frac{WL}{6}$ and $\frac{WL}{12}$ (4) None of the above
- 7. In the pin-jointed truss shown in the figure, the static degree of indeterminacy is

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

P.T.O.

8. For the frame shown in the figure, the shear equation is

(1)
$$\frac{M_{BA} + M_{AB}}{4} + \frac{M_{CD}}{4} + P = 0$$

(2)
$$\frac{M_{AB} + M_{BC}}{4} + \frac{M_{DC}}{4} + P = 0$$

$$(3) \quad \mathbf{M}_{\mathbf{AB}} + \mathbf{M}_{\mathbf{BA}} + \mathbf{M}_{\mathbf{CD}} + \mathbf{M}_{\mathbf{DC}} = \mathbf{0}$$

$$(4) \quad \mathbf{M}_{\mathbf{AB}} + \mathbf{M}_{\mathbf{BA}} + \mathbf{M}_{\mathbf{CD}} + \mathbf{M}_{\mathbf{DC}} = \mathbf{H}$$

9. In the force method of analysis of indeterminate trusses, if the truss is indeterminate to degree one, the change in length of redundant member due to unit force is found by using the formula

where A is cross-sectional area

I – Moment of Inertia

n- force in the member due to unit load application

N - force in the member due to actual load

E – Modulus of Elasticity

(1)
$$\sum \frac{n \ NL}{EI}$$
 (2) $n \sum \frac{NL}{AE}$
(3) $\sum \frac{n \ NL}{AE}$ (4) $\sum \frac{NL}{AE}$

10. In the moment distribution method, the carry over moment is equal to

- (1) double of its corresponding distributed moment and has same sign
- (2) one-half of its corresponding distributed moment and has same sign
- (3) one-half of its corresponding distributed moment and has opposite sign
- (4) None of the above

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

More downloads & guidance @ www.omkarshendure.com (AEE)

Α

- 7
- 11. For both ends of the fixed beam shown in the figure carrying a concentrated load eccentrically placed on the beam, deflection under load is

- 12. A continuous beam ABC is simply supported at supports A, B and C. Portion AB has span of 6 m and BC 4 m. Portion AB is loaded with a concentrated load of 120 kN downward at 3 m from A. The qualitative reactions shall be
 - (1) Reactions at A and B shall be upward and reaction at C shall be zero
 - (2) Reactions at A and B shall be upward and reaction at C shall be downward
 - (3) All reactions i.e., at A, B and C shall be upwards
 - (4) None of the above

13. A beam AB is simply supported and has flexural rigidity EI. The flexural strain energy of the beam having span 6 m and carrying a central point load of 10 kN is

- (1) 142.38/EI (2) 775/EI
- (3) 225/EI (4) None of the above
- 14. A given determinate truss is loaded with gravity loads. Under these loads different nodes undergo deflection horizontally and vertically. Thereafter the truss is subjected to a temperature drop of 50°C in the lower chord only. The coefficient of expansion or contraction $\alpha = 11.7 \times 10^{-6}/°C$. Which of the following statements is true?
 - (1) Vertical and horizontal deflection along lower chord nodes remains the same.
 - (2) Vertical and horizontal deflections along lower chord nodes shall change.
 - (3) Horizontal deflection along lower chord nodes shall change but vertical deflection shall not change
 - (4) None of the above

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

	More downlo www.omkars	ads & guidance @ hendure.com (AEE)	
Q10		8	Α
15.	If the span and dip of a parabolic the cable is approximately equal to	, then the length of	
	(1) $L + 3/8 h$	(2) $L + 8/3 h$	
	(3) $L + 3/8 h^2/L$	(4) $L + 8/3 h^2/L$	

 A three-hinged semicircular arch of radius R carries a uniformly distributed load W per unit run over the whole span. The horizontal thrust is

(1) R (2) $\frac{WR}{2}$ (3) $\frac{4}{3\pi}WR$ (4) $\frac{2}{3\pi}WR$

17. For the plane truss shown in the figure, the number of zero force members for the given loading is

18. A structure is said to be statically indeterminate when

- (1) the number of unknown reaction components exceeds the number of equilibrium conditions.
- (2) the number of equilibrium conditions exceeds the number of unknown reaction components.
- (3) the number of equilibrium conditions equal to the number of unknown reaction components.
- (4) None of the above

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

Which truss is the perfect truss out of the following? 19.

20. The flexibility method is also known as the

- (1) Energy method
- (3)
- Equilibrium method (2)
- Displacement method (4) Force method

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

21. The figure given below shows a pin-jointed frame :

What are the forces in members BE, CD and ED?

- 10 kN, 5 kN and 5 kN
 10 kN, 5 kN and Zero
 5 kN, 10 kN and Zero
 5 kN, 5 kN and Zero
- 22. A beam ABC is simply supported at A and B, BC is overhanging. Span AB = 8 m, BC = 2 m. Point 'D' is situated at 3 m from A. Using an influence line diagram or otherwise, find the maximum ordinates at 'D' of the influence line diagram for shear at 'D'.
 - $(1) 0.375 \qquad (2) 0.625 \qquad (3) + 0.625 \qquad (4) + 1.875$
- **23.** For compression members with double angle section, unequal angles are preferred to equal angles because
 - (1) they are easy for connection
 - (2) they lead to large value of minimum radius of gyration
 - (3) they have lesser effective length
 - (4) of saving in gusset plate material
- 24. Minimum pitch for riveted connections should *not* be less than
 - (1) 1.5 times the hole diameter
 - (2) 2.5 times the hole diameter
 - (3) 1.5 times the nominal diameter of rivet
 - (4) 2.5 times the nominal diameter of rivet

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

- 25. The effective slenderness ratio of a battened column, λ_e , is taken as 1.10 times the actual slenderness ratio of the column to account for
 - (1) Axial deformation (2) Bending deformation
 - (3) Shear deformation (4) All of the above
- 26. The maximum design force for a rivet in the following bracket connection, if spacing between adjacent rivets is 150 mm, is

27. The minimum thickness of a base plate, t_s in case of slab base can be calculated by the formula

(1)
$$t_s = \sqrt{25w(b^2 - 0.3a^2) f_y / \gamma_{m_0}}$$
 (2) $t_s = \sqrt{25w(b^2 - 0.3b^2) \gamma_{m_0} / f_y}$
(3) $t_s = \sqrt{25w(a^2 - 0.3b^2) \gamma_{m_0} / f_y}$ (4) $t_s = \sqrt{25w(a^2 - 0.3b^2) f_y / \gamma_{m_0}}$

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

Q10		12	· · · · · · · · · · · · · · · · · · ·
28.	The top chord of a roof truss is maintenance. The live load to be	inclined at an considered fo	angle of 20°, no access is provided for r the design will be
	(1) Zero	(2)	0.4 kN/m^2
	(3) 0.75 kN/m^2	(4)	0.55 kN/m^2
29.	If a structure is under fatigue st joints will fail	resses, then th	né welded joints as compared to riveted
	(1) Earlier	(2)	Later
	(3) At the same time	(4)	Not at all
0.	According to IS 800 : 2007, allow load (electronically operated up t	wable vertical to 50 tons) is	deflection for gantry girder with crane
	(1) $\frac{\text{span}}{500}$	(2)	$\frac{\text{span}}{750}$
	000		
31.	$(3) \frac{\text{span}}{1000}$ The design bending strength	(4)	span 300 vally supported beam is given by
	(3) $\frac{\text{span}}{1000}$ The design bending strength $M_d = (\beta_b.Z_p.f_y)/\gamma_{m_0}$, where β_b, Z_p and compact sections are given b (1) 1.0, 0.8 (3) 1, Z_e/Z_p	(4) n of a later ,, f_y and γ_{m_0} h by (2) (4)	$\frac{\text{span}}{300}$ rally supported beam is given by ave their usual meaning. $\beta_{\rm b}$ for plasti 0.8, 1.0 1, 1
	(3) $\frac{\text{span}}{1000}$ The design bending strength $M_d = (\beta_b.Z_p.f_y)/\gamma_{m_0}$, where β_b, Z_p and compact sections are given b (1) 1.0, 0.8 (3) 1, Z_e/Z_p The deep structural members su	(4) n of a later f_y and γ_{m_0} h by (2) (4) (4)	$\frac{\text{span}}{300}$ rally supported beam is given by ave their usual meaning. β_b for plastic 0.8, 1.0 1, 1
2 1. 22.	(3) $\frac{\text{span}}{1000}$ The design bending strength $M_d = (\beta_b.Z_p.f_y)/\gamma_{m_0}$, where β_b, Z_p and compact sections are given b (1) 1.0, 0.8 (3) 1, Z_e/Z_p The deep structural members su (1) Beams	(4) n of a later ,, f_y and γ_{m_0} h by (2) (4) (4) (2) (2)	span 300 vally supported beam is given by ave their usual meaning. β _b for plastic 0·8, 1·0 1, 1 nsverse loads are called Columns
31.	(3) $\frac{\text{span}}{1000}$ The design bending strength $M_d = (\beta_b.Z_p.f_y)/\gamma_{m_0}$, where β_b, Z_p and compact sections are given b (1) 1.0, 0.8 (3) 1, Z_e/Z_p The deep structural members su (1) Beams (3) Plate girders	(4) n of a later , f_y and γ_{m_0} h by (2) (4) (4) (2) (4) (4)	span 300 vally supported beam is given by ave their usual meaning. β _b for plasti 0.8, 1.0 1, 1 nsverse loads are called Columns Trusses
31. 32. 33.	(3) $\frac{\text{span}}{1000}$ The design bending strength $M_d = (\beta_b.Z_p.f_y)/\gamma_{m_0}$, where β_b, Z_p and compact sections are given b (1) 1.0, 0.8 (3) 1, Z_e/Z_p The deep structural members su (1) Beams (3) Plate girders The optimum thickness of web, t	(4) n of a later , f_y and γ_{m_0} h by (2) (4) (4) (2) (4) (2) (4) (2) (4) (4) (2) (4)	span 300 vally supported beam is given by ave their usual meaning. β _b for plastic 0.8, 1.0 1, 1 nsverse loads are called Columns Trusses irder is given by
31. 32. 33.	(3) $\frac{\text{span}}{1000}$ The design bending strength $M_d = (\beta_b.Z_p.f_y)/\gamma_{m_0}$, where β_b, Z_p and compact sections are given b (1) 1.0, 0.8 (3) 1, Z_e/Z_p The deep structural members su (1) Beams (3) Plate girders The optimum thickness of web, t (1) $t_w = \left(\frac{M_z}{f_y.k^2}\right)^{0.33}$	(4) n of a later , f_y and γ_{m_0} h by (2) (4) (4) bjected to tran (2) (4) c_w , of a plate g (2)	$\frac{\text{span}}{300}$ rally supported beam is given by ave their usual meaning. β_b for plastic 0.8, 1.0 1, 1 insverse loads are called Columns Trusses irder is given by $t_w = \left(\frac{f_y \cdot k^2}{M_z}\right)^{0.33}$

	More downloads & guidance @ www.omkarshendure.com (AEE)						
A			13	Q	10		
34.	In a the	In a singly reinforced balanced section, if M 30 concrete and Fe 415 steel is use then the value of neutral axis factor (ku _{max}) in L.S.M. is					
	(1)	0.42	(2)	0.46			
	(3)	0.48	(4)	0.52			
35.	The	maximum area of tension	steel in a beam	shall <i>not</i> exceed			
	(1)	0·15 bD	(2)	0·12 bD			
	(3)	0·04 bD	(4)	1.00 bD			
36.	Effe	ective flange width of a con	tinuous T-beam	is			
	(1)	$\mathbf{b_f} = \frac{l_0}{6} + \mathbf{b_w} + 6 \mathbf{D_f}$	(2)	$\mathbf{b_f} = \frac{l_0}{12} + \mathbf{b_w} + 3 \mathbf{D_f}$			
	(3)	$\mathbf{b_f} = \frac{l_0}{\frac{l_0}{\mathbf{b}} + 4} + \mathbf{b_w}$	(4)	$b_{f} = \frac{0.5 l_{0}}{\frac{l_{0}}{6} + 4} + b_{w}$			
37.	The men dep	e maximum spacing of sl mber shall not exceed th of the section.	hear reinforcem for the ver	ent measured along the axis of t tical stirrups, where 'd' is the effect	he ive		
	(1)	0·5 d	(2)	0·7 d			
	(3)	0·75 d	(4)	0·65 d			

- 38. Determine the minimum and maximum longitudinal reinforcement for a square column of size 300 mm × 300 mm having a clear cover of 25 mm.
 - (1) $500 \text{ mm}^2 \text{ and } 3750 \text{ mm}^2$
 - (2) $500 \text{ mm}^2 \text{ and } 5400 \text{ mm}^2$
 - (3) $720 \text{ mm}^2 \text{ and } 3750 \text{ mm}^2$
 - (4) $720 \text{ mm}^2 \text{ and } 5400 \text{ mm}^2$

I.

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

Q10

39. Match the end conditions for restrained slab panels :

a.	SI	1.	Four edges continuous
b.	S2	11.	One long edge continuous
c.	S 3	III.	Two adjacent edges discontinuous
d.	S 4	IV.	Four edges discontinuous
		V.	One short edge continuous

Select the correct response.

	a	b	c	d
(1)	IV	II	v	Ι
(2)	II	v	I	IV
(3)	III	v	II	IV
(4)	III	IV	II	v

40. For a simply supported beam of span 12 m, the basic value of span to effective depth ratio is

(1) 20 (2) 26	(3) 65/3 (4) 50/3
---------------	-------------------

11	Match th.			hiah	the vision	tumo	offooting	in mood	1.
41.	mater in	conditions	under	which	me given	type	or rooming	is used	4.

- a. Combined footing I. For two or more columns
 - Mat foundation II. For isolated or group of columns
- c. Pile foundation III. For individual column
- d. Isolated footing IV. For supporting all columns of structure

Select the correct response.

b.

a	b	e	d
Π	III	IV	Ι
I	IV	11	III
II	I	III	IV
п	IV	Ι	III
	a II I II II	a b II III I IV II I II IV	a b c II III IV I IV II II I III II I III II I III

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

A	More downloads & guidance @ www.omkarshendure.com (AEE)				
42.	The	height of a retaining wall is 5.5 m.	It is to	be designed as	
	(1)	Cantilever type	(2)	Counterfort type	
	(3)	Cantilever or counterfort type	(4)	None of the above	
43.	A sł	near key is provided in a retaining	wall to a	lvoid	
	(1)	Sliding	(2)	Overturning	
	(3)	Buckling	(4)	Bending	
44.	The is to	imposed floor load acting on stair be considered as	case for	residential and educational buildings	
	(1)	2.0 kN/m^2 and 3.0 kN/m^2	(2)	3.0 kN/m^2 and 2.0 kN/m^2	
	(3)	$4{\cdot}0$ kN/m ² and $3{\cdot}0$ kN/m ²	(4)	3.0 kN/m^2 and 4.0 kN/m^2	

45. The extreme stress at the top and bottom edges of a prestressed beam when tendons are placed along the longitudinal axis of the beam are

(1)	$\frac{P}{A} \pm \frac{M}{Z}$	(2)	$\frac{P}{Z}\pm\frac{M}{A}$
(3)	$\frac{P}{A} \pm \frac{M}{I}$	(4)	$\frac{P}{I} \pm \frac{M}{A}$

46. A simply supported rectangular prestressed concrete beam is subjected to uniformly distributed live load over its entire span, such that the resulting stress at the midspan at bottom fiber is zero. The eccentricity at that section is d/6 below the C.G., where d is the depth of the beam. Location of the thrust line at that section is

(1)	At C.G.	(2)	d/6 above C.G.
(3)	d/6 below C.G.	(4)	d/3 below C.G.

47. A 4.8 m long post-tensioned prestressed concrete beam is prestressed by a parabolic cable with eccentricity of 15 mm above C.G. at both supports and 45 mm below C.G. at the midspan. The beam is tensioned from one end. In the estimation of maximum loss due to friction, what should be the cumulative angle turned by the parabolic profile ?

(1)	0.01 radians	(2)	0·1 radians
(3)	0·15 radians	(4)	0.02 radians

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

48. In a pre-tensioned prestressed concrete cross-section,

Statement 1 :

The stress in wires is assumed to be zero at the end supports and increases to its final maximum value over its transmission length.

Statement 2:

The bond stress between concrete and prestressed wires is maximum near the end supports and decreases to nearly zero over its transmission length.

- (1) Statements 1 and 2 are true
- (2) Statement 1 is true and statement 2 is false
- (3) Statement 1 is false and statement 2 is true
- (4) Statements 1 and 2 are false
- **49.** To avoid sudden collapse just after a shear crack, minimum shear reinforcement is provided in prestressed concrete member in the form of stirrups. IS 1343 suggested the relation as

(1)
$$\frac{A_{sv}}{b.s_v} = \frac{0.4 \text{ d}}{0.87 \text{ f}_y}$$

(2)
$$\frac{A_{sv}}{bd \cdot s_v} = \frac{0.4}{0.87} \times f_y$$

(3)
$$\frac{A_{sv}}{b.s_{v}} = \frac{0.4}{0.87 f_{y}}$$

(4)
$$\frac{A_{sv}}{b.s_v} = \frac{0.4 f_{ck}}{0.87 f_y}$$

- **50.** What is the maximum possible eccentricity in a prestressed concrete beam of circular cross-section ? Diameter of the section is d. Tension is not allowed anywhere and any time in the cross-section. Neglect dead load (self-weight).
 - (1) d/8 (2) d/6
 - (3) d/4 (4) d/3

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

Α

51. What will be the maximum possible uniformly distributed load (inclusive of self-weight) over the entire span of a simply supported beam of span 'L' such that the deflection at midspan at service condition is zero ? The cross-section is rectangular. The prestressing force 'P' is applied with uniform eccentricity 'e'. Assume no losses.

(1)	$\frac{8\text{Pe}}{\text{L}^2}$	(2)	$\frac{8 \cdot 8 \text{Pe}}{\text{L}^2}$
(3)	$\frac{9.6\text{Pe}}{\text{L}^2}$	(4)	$\frac{10.4\text{Pe}}{\text{L}^2}$

- 52. The loss due to creep in prestressed concrete shall be determined considering
 - (1) All loads and prestressing force
 - (2) Live loads and prestressing force
 - (3) Permanent loads and prestressing force
 - (4) Permanent loads only
- **53.** The limit state of collapse for prestressed concrete is
 - (1) Limit state of collapse : Deflection
 - (2) Limit state of collapse : Cracking
 - (3) Limit state of collapse : Maximum compression
 - (4) None of the above

54. The designed prestressed concrete element should satisfy the limits specified for permissible stresses at transfer stage as well as service condition. The prestressing force 'P' and eccentricity 'e' evaluated from those limits are

- (1) Maximum value of 'P' and maximum value of 'e'
- (2) Maximum value of 'P' and minimum value of 'e'
- (3) Minimum value of 'P' and maximum value of 'e'
- (4) Minimum value of 'P' and minimum value of 'e'
- 55. During tensioning of prestressing tendons the breakage of wires in any one prestressed concrete member shall *not* exceed
 - (1) 2.5% (2) 7.5% (3) 10% (4) 12.5%

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

- 56. Who is known as the Father of Scientific Management?
 - (1) Robert Owen
 - (2) Elton Mayo
 - (3) F.W. Taylor
 - (4) Henry Fayol
- **57.** ABC analysis is referred to as
 - (1) Always Better Control analysis
 - (2) Alphabetical Backup Control analysis
 - (3) Analytical Boost Crane analysis
 - (4) None of the above
- **58.** A scaled drawing of the proposed construction site showing all the relevant features such as entry and exit points to the site, storage area for materials, toilets, workers quarters, etc. is called
 - (1) Construction Plan
 - (2) Job Layout
 - (3) Development Plan
 - (4) Architectural Plan
- **59.** The event or events that immediately come before another event without any intervening events are called ______ events to that event.
 - (1) Successor
 - (2) Dummy
 - (3) Predecessor
 - (4) Slack

60. Which rule is used for numbering the events in a network, scientifically?

- (1) Stevenson's rule
- (2) Jackson's rule
- (3) Fulkerson's rule
- (4) Watson's rule

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

Q10

61.	The	The cost inflow a firm receives if a machine still has value at the time of its disposal										
	is k	nown as										
	(1) Salvage value											
	(2)	Purchase expenses										
	(3)	Operating cost										
	(4)	Ownership cost										
62.	Will year	liams-Steiger Occupation	al Safety and He	alth Act (OSH	I Act) was passed in the							
	(1)	1968	(2)	1970								
	(3)	1974	(4)	1972								
63.	Coe	fficient of traction for a c	rawler tractor is u	ipto								
	(1)	0.9	(2)	0.6								
	(3)	1.2	(4)	1.0								
64.	Wh	ich of the following is a "(Class-A" item in A	BC analysis ?								
	(1)	Items with low cost but	large in number									
	(2)	Items with average cost	t but moderate in	number								
	(3)	Items with high cost bu	t few in number									
	(4)	Items with high cost bu	t large in number									
65.	Wh	ich of the following best d	efines "Negative l	Stock" ?								
	(1)	Project ahead of schedu	le									

(2) **Project on schedule**

Α

- (3) **Project behind schedule**
- (4) None of the above

66. Quality circles in the construction industry can have the following participants :

- (1) Engineers and architects
- (2) Contractors and raw material suppliers
- (3) Clients and consultants
- (4) All of the above

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

Q10

67. After solving the system

 $2x_1 + 4x_2 - 6x_3 = -8$, $x_1 + 3x_2 + x_3 = 10$, and $2x_1 - 4x_2 - 2x_3 = -12$

using Gauss-Jordan method, the values of x_1 , x_2 and x_3 are

(1)	(1, 2, 3)	(2)	(1, 3, 2)

 $(3) \quad (3, 2, 1) \qquad (4) \quad (3, 1, 2)$

68. The solution of the equations

```
5x_1 + x_2 + x_3 + x_4 = 4

x_1 + 7x_2 + x_3 + x_4 = 12

x_1 + x_2 + 6x_3 + x_4 = -5

x_1 + x_2 + x_3 + 4x_4 = -6
```

by Gauss-Jordan method is

- (1) -1, -2, 1, 2(3) -1, 2, -1, 2(4) 1, 2, -1, -2
- **69.** To find the root of f(x) = 0 by using the bisection method, an iteration is begun with the lower and upper guesses of the root. If x_{lower} and x_{upper} are the roots, then at the end of the iteration, the absolute relative approximate error in the estimated value of the root would be

(1) $\left| \frac{x_{upper}}{x_{upper} + x_{lower}} \right|$ (2) $\left| \frac{x_{lower}}{x_{upper} + x_{lower}} \right|$ (3) $\left| \frac{x_{upper} - x_{lower}}{x_{upper} + x_{lower}} \right|$ (4) $\left| \frac{x_{upper} + x_{lower}}{x_{upper} - x_{lower}} \right|$

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

70. With initial approximation of $x_1 = x_2 = x_3 = 0$, what is the next value of x_1 in the following set of simultaneous equations ?

	$27x_1 + 6x_2 - x_3 = 81$		
	$6x_1 + 15x_2 + 2x_3 = 75$		
	$x_1 + x_2 + 50x_3 = 110$		
(1)	2.25	(2)	3.0
(3)	3·25	(4)	4·0

71. Match the following :

A

a.	Newton-Raphson method	I.	f(x) is a linear function of 'x'
b.	Simpson's 1/3 rd rule	II.	The number of intervals must be even
c.	Trapezoidal rule	I II .	Diagonal matrix
d.	Gauss Elimination	IV.	Solution of algebraic and transcendental equations
e.	Gauss-Jordan method	V.	Forward elimination and Backward substitution

Select the correct response.

	a	b	С	d	е
(1)	Ι	II	III	IV	v
(2)	Π	III	Ι	v	IV
(3)	III	Ι	II	v	IV
(4)	IV	II	I	v	III

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

P.T.O.

- 72. The procedure adopted in the Gauss-Jordan method in solving linear simultaneous equations is
 - (1) It is required to assume initial approximate values of the variables.
 - (2)It reduces the given system of equations to a diagonal matrix.
 - (3)It reduces the given system of equations to an equivalent triangular system.
 - (4) The given matrix is factored into lower and upper triangular matrices.
- 73. The solution by Gauss-Jordan method for the following equations

 $\mathbf{x} + \mathbf{y} + \mathbf{z} = 9$ 2x - 3y + 4z = 133x + 4y + 5z = 40(1) x = 1, y = 2, z = 5(2)x = 1, y = 3, z = 5x = 2, y = 1, z = 3(3) (4) x = 1, y = 3, z = 2

is

- 74. The Newton-Raphson method is said to have
 - Linear convergence (1)
 - (2)Superlinear convergence
 - (3) Quadratic convergence
 - Oscillatory convergence (4)

- **75.** Back substitution is required in the following method(s) in the solution of linear simultaneous equations :
 - (1) Gauss-Elimination method
 - (2) Gauss-Jordan method
 - (3) Iterative method
 - (4) All of the above
- 76. The following data is given for the velocity of a body as a function of time. It is required to find the velocity at t = 21 sec. For the purpose a quadratic polynomial $v(t) = at^2 + bt + c$ is to be used. The velocity profile is given as

t in sec	0	13	14	15	18	20	22	24
v(t) in m/s	0	225	248.5	316.6	517·35	535·35	570	589·5

The correct set of equations that will find a, b and c is

	169	13	1] [a]	Г	248.5		[176	14	1]	a		248.5	
(1)	225	15	1	b =	=	316 ∙6	(2)	225	15	1	b	=	316.6	
	324	18	1	c	Ę	517-35		400	20	1	c		535-35	
	169	13	1	a		225]	[324	18	1]	[a]		[517 ·35]	
(3)	196	14	1	b	=	248.5	(4)	484	22	1	b	=	589·50	
	225	15	1	c		316.6		225	15	1	[c]		316.6	

- 77. During the determination of roots of equations $x^2 + 2xy = 6$ and $x^2 y^2 = 3$ using the Newton-Raphson method, the value of Jacobian matrix 'D' is found to be
 - (1) -4
 - (2) 8
 - (3) -12
 - (4) + 4

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

P.T.O.

Q10

A

		More downloads &	& gui	dance @
~ ~ ~		www.omkarshend	ure.c	com (AEE)
Q10		24	ŀ	
78.	Wha	at is the minimum crushing strengt	h of Gi	ranite used in India ?
	(1)	200 N/mm ²	(2)	100 N/mm ²
	(3)	50 N/mm ²	(4)	250 N/mm ²
79.	Whi	ich of the following is <i>not</i> a test for r	neasur	ring the workability of concrete ?
	(1)	Slump Test	(2)	Flow Test
	(3)	Le Chatelier's Test	(4)	Compaction Factor Test
80.	Whi cone	ch of the following is a field tes crete?	t for	measuring the consistency of plastic
	(1)	Le Chatelier's Test	(2)	Compaction Factor Test
	(3)	Elongation Index Test	(4)	Kelly Ball Test
81.	In v	which type of bond is cavity existing '	?	
	(1)	Flemish bond	(2)	English bond
	(3)	Rat-trap bond	(4)	Stretcher bond
82.	` Whi	ch of the following is a method of me	echani	cal ventilation ?
	(1)	Plenum System	(2)	Bleeding System
	(3)	Segregation System	(4)	Natural Ventilation System
83.	Gyp	sum is added to Portland cement du	iring it	s manufacturing so that it may
	(1)	Accelerate the setting time		
	(2)	Retard the setting time		
	(3)	Decrease the burning temperature	•	
	(4)	Facilitate grinding		
84.	Prir	ciples of planning for buildings incl	ude	
	a.	Aspect and Prospect	b.	Roominess
	c.	Grouping	d.	Flexibility and Privacy
	Ans	wer options :		
	(1)	a and b only	(2)	b and d only
	(3)	a and c only	(4)	a, b, c and d

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

.

A		More o www.c	download omkarshe	ds & gu endure 25	idance @ .com (AEE)		Q10
85.	Tim	ber can be made reas	onably fire-r	esistant l	ру			
	(1)	Soaking it in Ammo	niam Sulpha	ate				
	(2)	Coating it with Tar	paint					
	(3)	Pumping creosote oi	l into timber	r under h	igh pressure			
	(4)	Seasoning process						
86.	Wh	ich of the following is :	not a non-de	estructive	test?			
	(1)	Rebound Hammer T	'est					
	(2)	Surface Hardness Te	est					
	(3)	Ultrasonic Pulse Ve	locity Test					
	(4)	Soundness Test					,	
87.	Wh	ich is the major consti	tuent of ordi	inary Por	tland cement ?			
	(1)	CaO (2)	MgO	(3)	SO_3	(4)	$\rm Fe_2O_3$	
88.	Whi	ich is an example of ca	ased cast-in-	situ conci	ete pile ?			
	(1)	Raymond pile		(2)	Watson pile			
	(3)	Reynold pile		(4)	Boston pile			
89.	As gene	per building bye-law erally used ?	s, for fixing	g up the	height of a b	ouilding	g, which	rule is
	(1)	$63\frac{1}{2}^{\circ}$ Rule		(2)	$37\frac{2}{3}^{\circ}$ Rule			
	(3)	$65rac{1}{2}^\circ$ Rule		(4)	45° Rule		,	
90.	 The	stress developed due	to external f	force in a	n elastic mater	ial		
	(1)	Depends on elastic c	onstant					
	(2)	Does not depend on	elastic const	ant				

- (3) Depends partially on elastic constant
- (4) Depends on limit of proportionality

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

iviore de	ownioads	& gui	dance @			
www.or	mkarshen	dure.c	om (AEE)		A
Modulus of Elasticity	y in terms of :	Bulk Mo	dulus and Me	odulus of	Rigidity is	
$\frac{9KG}{3K+G}$ (2)	$\frac{9KG}{K+3G}$	(3)	$\frac{3K+G}{9KG}$	(4)	$\frac{\mathrm{K}+\mathrm{3G}}{\mathrm{9KG}}$	
se of biaxial stresses	, the maxim	ım value	of shear stre	ess is	. <u> </u>	
Difference of norma	l stresses					
Half the difference of	of normal stre	esses				
Sum of normal stres	ses					
Half the sum of nor	mal stresses					
solid circular shaft ent 'M', the ratio of s is given by	is simultane maximum be	ously su ending st	bjected to a ress and max	torque " ximum to	F and a bend	ling ing
M/T		(2)	T/M			
2M/T		(4)	2T/M			
lenderness ratio of a m effective length, is	a vertical colu s	umn of se	quare cross-s	ection of	2·5 cm sides :	and
200		(2)	360			
240		(4)	416			
nns of given length, for different end cor	- cross-section nditions. The	and ma stronges	te r ial have di st column is c	ifferent v one whos	alues of buck	ling
one end is fixed and	the other en	d is hing	ed			
both the ends are hi	nged or pin-j	ointed				
one end is fixed and	the other en	tirely fre	e			
both the ends are fi	ked					
cular shaft was initiant on. If the magnitude ne, then the ratio of r 0·25	ally subjected of bending p naximum ber	to bend moment nding str (2)	ing moment is found to b ess to shear a 0·50	and then the same stress wo	was subjected me as that of ould be	d to the
	Vodulus of Elasticity <u>9KG</u> (2) se of biaxial stresses Difference of norma Half the difference of Sum of normal stress Half the sum of normal solid circular shaft ent 'M', the ratio of s is given by M/T 2M/T elenderness ratio of a m effective length, is 200 240 mns of given length, for different end con one end is fixed and both the ends are hi one end is fixed and	Vodulus of Elasticity in terms of $\frac{9KG}{3K + G}$ (2) $\frac{9KG}{K + 3G}$ se of biaxial stresses, the maximu Difference of normal stresses Half the difference of normal stresses Half the difference of normal stresses Half the sum of normal stresses Solid circular shaft is simultaneer ent 'M', the ratio of maximum be s is given by M/T 2M/T elenderness ratio of a vertical column effective length, is 200 240 mns of given length, cross-section for different end conditions. The one end is fixed and the other em- both the ends are hinged or pin-ji one end is fixed and the other em-	Modulus of Elasticity in terms of Bulk Mo $\frac{9KG}{3K+G}$ (2) $\frac{9KG}{K+3G}$ (3)se of biaxial stresses, the maximum valueDifference of normal stressesHalf the difference of normal stressesSum of normal stressesHalf the sum of normal stressesSum of normal stressesHalf the sum of normal stressesSolid circular shaft is simultaneously suitent 'M', the ratio of maximum bending stressessolid circular shaft is simultaneously suitent 'M', the ratio of maximum bending stressesM/T(2)2M/T(4)Senderness ratio of a vertical column of sem effective length, is200(2)240(4)mns of given length, cross-section and mar for different end conditions. The strongesone end is fixed and the other end is hing both the ends are hinged or pin-jointed one end is fixed and the other entirely free	Modulus of Elasticity in terms of Bulk Modulus and Modulus of Elasticity in terms of Bulk Modulus and Modulus and Modules	Modulus of Elasticity in terms of Bulk Modulus and Modulus of $\frac{9KG}{3K+G}$ (2) $\frac{9KG}{K+3G}$ (3) $\frac{3K+G}{9KG}$ (4)se of biaxial stresses, the maximum value of shear stress isDifference of normal stressesHalf the difference of normal stressesSum of normal stressesHalf the sum of normal stressesSolid circular shaft is simultaneously subjected to a torque "solid circular shaft is simultaneously subjected to a torque "solid circular shaft is simultaneously subjected to a torque "M/T(2)T/M2M/T(4)2T/M2M/T(4)21/T(4)2T/MSenderness ratio of a vertical column of square cross-section ofm effective length, is200(2)360240(4)416mns of given length, cross-section and material have different vfor different end conditions. The strongest column is one whosone end is fixed and the other end is hingedboth the ends are hinged or pin-jointedone end is fixed and the other entirely free	Modulus of Elasticity in terms of Bulk Modulus and Modulus of Rigidity is $\frac{9KG}{3K+G}$ (2) $\frac{9KG}{K+3G}$ (3) $\frac{3K+G}{9KG}$ (4) $\frac{K+3G}{9KG}$ se of biaxial stresses, the maximum value of shear stress isDifference of normal stressesHalf the difference of normal stressesSum of normal stressesHalf the sum of normal stressesSum of normal stressesHalf the sum of normal stressesSolid circular shaft is simultaneously subjected to a torque 'T' and a bendent 'M', the ratio of maximum bending stress and maximum torsional shearsi given byM/T(2)T/M2M/T(4)2T/M200(2)360240(4)416nns of given length, cross-section and material have different values of buckl for different end conditions. The strongest column is one whose one end is fixed and the other end is hinged both the ends are hinged or pin-jointed one end is fixed and the other entirely free

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

A steel bar ABC of uniform cross-section 100 mm^2 is suspended vertically and loaded 97. as shown in the figure. If the lower end of bar C does not move when loads are applied (neglect self-weight), then the value of force P is $(E_s = 200 \text{ kN/mm}^2)$

Principal stresses at a point in a plane stressed element are $\sigma_x = \sigma_y = 500 \text{ N/mm}^2$. **98.** Normal stress on the plane inclined at 45° to the x-axis will be

(1)	Zero		(2)	500 N/mm ²
(3)	1000 N/mm^2	ъ.	(4)	707 N/mm ²

99. The Euler's crippling load for a 2 m long slender steel rod of uniform cross-section hinged at both the ends is 1 kN. The Euler's crippling load for a 1 m long steel rod of the same cross-section and hinged at both the ends will be

(1)	0·25 kN	(2)	0∙5 kN
(3)	2 kN	(4)	4 kN

- 100. A solid shaft of diameter 'D' carries a twisting moment that develops maximum shear stress. If the shaft is replaced by a hollow one of outside diameter 'D' and inside diameter $\frac{D}{2}$, then the maximum shear stress will be
 - (1)1.067 τ 1·143 t (2)(3)1·33 τ (4)2τ

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

P.T.O.

Q10

Α

www.omkarshendure.com (AEE)

More downloads & guidance @

सूचना - (पृष्ठ 1 वरून पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतःबरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

Pick out the correct word to fill in the blank :

Q. No. 201. I congratulate you ______ your grand success.

 (1) for
 (2) at

 (3) on
 (4) about

 ह्या प्रश्नाचे योग्य उत्तर ''(3) on'' असे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल. यास्तव

 खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक ''③'' हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

 प्र. क्र. 201.
 ①

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्च्या कामासाठी जागा/SPACE FOR ROUGH WORK