

वेळ : 2 (दोन) तास

2015

CODE : ${f SO6}$

BOOKLET NO.

प्रश्नपुस्तिका स्थापत्य अभियांत्रिकी

एकूण प्रश्न : 100

एकूण गुण : 100

शेवटचा अंक

सूचना

(1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

ा केंद्राची संकेताक्षरे

- (2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.
- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे **न विसरता नमूद करावा.**
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपित्रकेवरील सूचनेप्रमाणे तुमच्या उत्तरपित्रकेवर नमूद करावा. अशा प्रकारे उत्तरपित्रकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) <u>सर्व प्रश्नांना समान गृण आहेत.</u> यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण **एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील** प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार पर्यायपैकी सर्वात योग्य उत्तरच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणात्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणात्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल्.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

पर्यवेक्षकांच्या सूचनेविना हे सील उघडू नये

SO6 2 A

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK

A

3

SO₆

1. The rank of the following matrix is:

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$$

(1) 1

(2)2 (3) 3 (4)4

2. Investigate the values of λ and μ so that the following equations have an infinite number of solutions:

$$2x + 3y + 5z = 9$$

$$7x + 3y - 2z = 8$$

$$2x + 3y + \lambda z = \mu$$

(1) $\lambda = 5, \mu = 9$

(2)
$$\lambda = 5$$
, $\mu = 0$

(2) $\lambda = 5$, $\mu = 0$ (3) $\lambda = 0$, $\mu = 9$ (4) $\lambda = 0$, $\mu = 0$

Laplace transform of $e^{at} Cosh(bt)$ if S > a is : 3.

(1)
$$\frac{b}{(S-a)^2+b^2}$$

(2)
$$\frac{S-a}{(S-a)^2+b^2}$$

(3)
$$\frac{S-a}{(S-a)^2-b^2}$$

(4)
$$\frac{b}{(S-a)^2-b^2}$$

The differential equation of $xy = Ae^x + Be^{-x}$ is : 4.

(1)
$$x \frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + xy = 0$$

(1)
$$x \frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + xy = 0$$
 (2) $x \frac{d^2y}{dx^2} - 2 \frac{dy}{dx} - xy = 0$

(3)
$$x \frac{d^2y}{dx^2} + 2 \frac{dy}{dx} + xy = 0$$

(3)
$$x \frac{d^2y}{dx^2} + 2 \frac{dy}{dx} + xy = 0$$
 (4) $x \frac{d^2y}{dx^2} + 2 \frac{dy}{dx} - xy = 0$

Evaluate upto three digits using Trapezoidal rule taking $h = \frac{1}{4}$ 5.

$$I = \int_0^1 \frac{\mathrm{d}x}{1+x^2}$$

(1) 0.783

(2)0.875 (3)0.578 (4) 0.857 SO₆

4

A

The gradient of $f(x, y, z) = x^3 - xy^2 - z$ at $P_0(1, 1, 0)$ is : 6.

- (1) 2i + 2j + k
- (2) 2i 2j k
- 2i + 2j k

(4)-2i-2j+k

7. Match the List - I (functions) with List - II (Laplace transforms) and select the correct answer:

List - I

List - II

- $\frac{a}{S^2 a^2}$
- Sinhat (b)
- (ii)
- (c) U(t-a)
- (iii)
- (d) $\delta(t-a)$

Answer Options:

- (a) (b)
- (c) (d)

(iii)

- (1) (iv) (ii)(i)
- (2)(iii) (ii) (iv) (i)
- (3) (i) (iii) (iv) (ii)
- (4)(ii) (iv) (iii) (i)

Two non-zero vectors \overline{a} and \overline{b} are parallel if : 8.

- (1) $\overline{a} \times \overline{b} = \overline{0}$
- (2) $|\overline{a} \times \overline{b}| = 1$ (3) $\overline{a} \cdot \overline{b} = 0$
- $(4) |\overline{A}| = |\overline{B}|$

A simply supported beam of span 'l' is carrying a uniformly distributed load of ' ω ' per 9. unit run over the whole span. The magnitude of deflection at mid span is

(EI – flexural rigidity)

 $5 \omega l^4 / 384 EI$ (1)

 $\omega l^3/48$ EI (2)

(3) $\omega l^3/3$ EI (4) $\omega l^4 / 8 \text{ EI}$

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

A			5	SO6							
10.	(ma		ng conn	ferring reaction to web of another ISMB 300 lections is most suitable? Consider the top level.							
	(1)	Bracket plate connection	(2)	Stiffened seat connection							
	(3)	Unstiffened seat connection	(4)	Frame connection							
11.				t power. Shaft A is solid with diameter 'd', neter 'd' and internal diameter ' $\frac{d}{2}$ '. Material,							
	length, maximum shear stresses and speed being the same, what is percentage reduction in power transmission if 'A' is replaced by 'B'?										
	(1)	(1) No change in power transmission									
	(2)	(2) 50% reduction									
	(3)										
	(4)										
12.		Which of the following is/are true about a load balancing cable in a prestressed concrete beam ?									
	(a) Bending moment due to working load is counteracted completely.										
	(b)	Shear force due to working loa	d is cou	unteracted completely.							
	(c)	Pressure line will pass from ne	utral ax	is throughout the span.							
	(d)	Stresses will be uniform throucompressive stresses.	ughout	the span and will be equal to direct axial							
	(1)	Only (a)	(2)	Only (a) and (b)							
	(3)	Only (c) and (d)	(4)	All (a), (b), (c) and (d)							
13.	Wel	crippling in a steel beam, occurs	s due to):							
	(1)	column action of compressive f	lange								
	(2) failure of web under concentrated load										
	(3) failure of web under excessive B.M.										
	(4)	secondary bending moment									

SO6 6 A

14. A cylindrical vessel whose ends are closed by means of rigid flange plates, is made of steel plate 3 mm thick. The internal length and diameter of vessel are 50 cm and 25 cm respectively. The longitudinal stress of 62.5 MN/m^2 and circumferential stress of 125 MN/m^2 is developed in the cylindrical shell due to internal fluid pressure. Taking Poisson's ratio = 0.3 and E = 200 GN/m^2 , the change in length of cylinder shall be:

(1) 0.000531 mm

(2) 0.000125 mm

(3) 0.133 mm

(4) 0.0625 mm

15. For a plate girder with effective depth of 1500 mm, the connection of vertical stiffner to the web of plate girder, having 10 mm thickness of web and out stand width of stiffner of 50 mm are designed for :

(1) Shear force = 0.04 kN/mm

(2) Shear force = 0.4 kN/mm

(3) Bending moment = 0.04 kN-mm (4)

Bending moment = 0.4 kN-mm

16. (a) Battens are designed to carry longitudinal shear

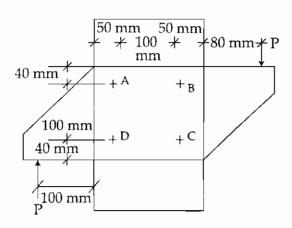
(b) Battens are designed to carry moment.

(c) Lacings are designed to carry axial tension.

(d) Lacings are designed to carry axial compression.

(e) Lacings are designed to carry moment.

Which of the above statements are correct?


(1) (a), (b) and (c) only

(2) (a), (b) and (e) only

(3) (a), (b), (c) and (d) only

(4) (b), (c) and (e) only

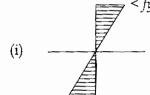
17.

If all bolts are equal in diameter, which bolts are critical?

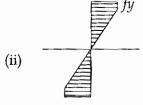
(1) (A) and (B) only

(2) (A), (B), (C) and (D) all are equally critical

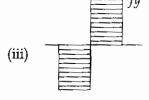
(3) (A) and (D)

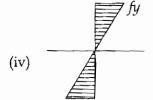

(4) (B) and (C)

A


7

SO₆

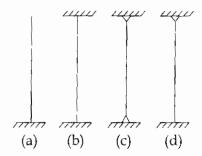

18. (a) Slender section


(b) Semicompact section

(c) Compact section

(d) Plastic section

Correct match is:


- (a) (b) (c) (d)
- (1) (ii) (iv) (i) (iii)
- (2) (iv) (iii) (ii) (i)
- (3) (i) (ii) (iii) (iv)
- (4) (i) (iv) (ii) (iii)
- 19. A perfect pin jointed frame should satisfy the equation (where m = number of members and j = number of joints)
 - (1) m = 2j 4
- (2) m = 3j 3
- (3) m = 3j 2
- (4) m = 2j 3

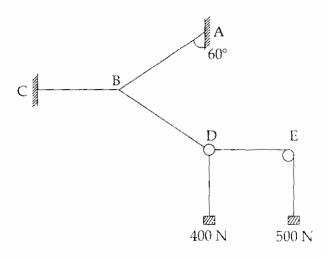
SO₆

8

A

20. Keeping all other parameters the same, the end condition of four different columns are as shown.

[Same height and cross-section]


Relation for buckling load will be

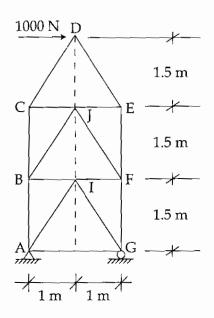
- (1) $P_a = P_b = P_c = P_d$
- (2) $P_b > P_d > P_c > P_a$
- (3) $P_a > P_b > P_c > P_d$
- (4) $P_a > P_c > P_d > P_b$

21. As per IS 456: 2000, the vertical deflection limits for a cantilever may generally be assumed to be satisfied provided the effective span to effective depth ratio is not greater than:

- (1) 7
- (2) 20
- (3) 26
- (4) 10/span

22.

'D' is a weightless ring 'E' is a frictionless pulley. Calculate tension cable AB


- (1) $200 \sqrt{3} \text{ N}$
- (2) $900\sqrt{2} \text{ N}$
- (3) 800 N
- (4) 1800 N

 \mathbf{A}

9

SO₆

23. Determine force in member 'AB' of truss:

(1) 666.67 N (T)

(2) 1500 N (T)

(3) $1000 \sqrt{2} \text{ N (T)}$

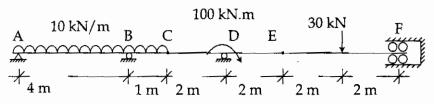
- (4) Zero
- **24.** A symmetric I-section is used as a cantilever beam. It has to carry a point load at cantilever end in addition to its own wt. Which of the following statements are correct?
 - (a) Flexural tensile stresses will act at bottom fibre and flexural compressive stresses will act at top fibre of the section.
 - (b) Flexural tensile stresses will act at top fibre and flexural compressive stresses will act at bottom fibre of the section.
 - (c) Maximum shear stresses will act at junction of flange and web, and zero at neutral axis of the section.
 - (d) Maximum shear stresses will act at neutral axis of the section.
 - (1) (a) and (c)
- (2) (b) and (c)
- (3) (a) and (d)
- (4) (b) and (d)

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK

α	-	•	-
-	•	14	6
	l	"	D

10

A


- 25. Consider that a steel bar of diameter 'd' is embedded in a large concrete block. If length of bar embedded in concrete is 'L' and bond strength between concrete and bar is τ_{bd} , what maximum force can be applied on the bar?
 - (1) Maximum of 0.87 fy. $\sqrt[\pi]{4}$ d² and τ_{bd} . π dL
 - (2) Maximum of τ_{bd} . $\sqrt[7]{4}$ d² and 0.87 fy π dL
 - (3) Minimum of 0.87 fy. $\sqrt[\pi]{4}$ d² and τ_{bd} . π dL
 - (4) Minimum of τ_{bd} . $\sqrt[\pi]{4}$ d² and 0.87 fy. π dL
- 26. A RCC beam of width 300 mm and effective depth 600 mm is made up of concrete with $\tau_{cmax} = 2$ MPa. For reinforcement provided and grade of concrete used $\tau_c = 0.7$ MPa. Factored shear force acting on the beam is 400 kN. Shear reinforcement shall be designed for ______.
 - (1) 360 kN

(2) 274 kN

(3) 400 kN

(4) Section needs to be redesigned

27.

C and E are internal hinges.

Calculate reaction at D.

- (1) 80 kN
- (2) 50 kN
- (3) 130 kN
- (4) 48.76 kN

- 28. A two way slab is defined as:
 - (1) Supported on all four edges and $\frac{ly}{lx} > 2$
 - (2) Supported on all four edges and $\frac{ly}{lx} < 2$
 - (3) $\frac{ly}{lx} < 2$
 - (4) ly/lx > 2

A		11 500								
29.	shor	a simply support t direction for m I required at the	naximum	n B.M. is 4	100 mm					
	(1)	300 mm ² both	ways at	top and	botton	n				
	(2)	225 mm² both	ways at	top and	botton	า				
	(3)	100 mm² both	ways at	top and	botton	า				
	(4)	none of the ab	ove							
30.	mut	element has a ter ually perpendic cipal tensile stre	ular plai	nes with		-				•
	(1) 7 MPa				(2)	4 MP				
	(3)									
										
31.	y = x load	equation of a $x - (x^2/40)$. The of 20 kN/m ov	span of t er left h	the arch i alf of the	s 48 m.	The ar	rch is carry rizontal rea	ing a unifaction at t	ormly the sup	distributed port :
31.	y = x	$(x-(x^2/40))$. The	span of t	the arch i	s 48 m.	The ar	ch is carry	ing a unif	ormly the sup	distributed
31.	y = x $load$ (1)	$(x-(x^2/40))$. The lof 20 kN/m ov	span of ter left h	the arch i alf of the 360 kN	s 48 m. span.	The ar The ho	ch is carry rizontal rea 300 kN	ing a unifaction at t	ormly the sup	distributed port :
	y = x $load$ (1)	$(x^2/40)$. The of 20 kN/m ov 120 kN	span of the rer left he (2)	the arch i alf of the 360 kN compatib	s 48 m. span.	The ar The ho (3) ————ndition	ch is carry rizontal rea 300 kN	ing a unifaction at t	ormly the sup	distributed port :
	y = x $load$ (1) Con	x – (x²/40). The lof 20 kN/m ov 120 kN	span of the rer left had (2) ment or a caused	the arch i alf of the 360 kN compatib by redun	s 48 m. span. ility condant fo	The ar The ho (3) ndition	ch is carry rizontal rea 300 kN means :	ing a unif action at t (4)	ormly the sup	distributed port :
	y = x $load$ (1) Con (1)	x - (x²/40). The lof 20 kN/m ov 120 kN sistent displacer displacements	span of the rer left has been dependent or caused caused	the arch i alf of the 360 kN compatib by redun	s 48 m. span. ility condant forces otl	The are The horozona (3) andition orces that	ch is carry rizontal rea 300 kN means :	ing a unif action at t (4)	ormly the sup	distributed port :
	y = x load (1) Con (1) (2)	x – (x²/40). The lof 20 kN/m ov 120 kN sistent displacer displacements displacements	span of ter left h (2) ment or caused caused caused	the arch i alf of the 360 kN compatib by redun by the fo	s 48 m. span. ility condant forces other	The art (3) ndition orces ther than and a	rch is carry rizontal rea 300 kN means :	ing a unif action at t (4) nt forces ces	formly the sup 383	distributed pport : .41 kN
	y = x load (1) Con (1) (2) (3) (4)	x – (x²/40). The lof 20 kN/m ov 120 kN sistent displacer displacements displacements displacements	span of fer left h (2) ment or caused caused caused caused b axial loa	the arch i alf of the 360 kN compatib by redund by the for the result of 1000 d of 1000	s 48 m. span. ility condant forces otherwise ant and ant and like its like	The are The horizon (3) and ition orces there that and a lapplied to be defined as to be defined as to be defined as the second	rizontal reason applied forces sati	ing a unif action at (4) action at (4) action at (4) action at (4) action at (4)	undary	distributed port: .41 kN conditions
32.	y = x load (1) Con (1) (2) (3) (4)	2 - (x²/40). The of 20 kN/m ov 120 kN sistent displacements displacements displacements displacements displacements	span of the rer left has a seed to be caused by a seed a seed by a	the arch i alf of the 360 kN compatib by redund by the for the redund d of 1000 mm. As	s 48 m. span. ility condant forces otherwise ant and ant and like its like	The are The horizon (3) and the that and a lapplied to be defected	rizontal reason applied forces sati	ing a unificaction at the (4) action at forces as fying both reffective an should	undary e length	distributed port: .41 kN conditions

SO)				12				Α	
34.	Isoc	chrone depicts :								
	(1)	Pore pressure (U _e) ve	rsus depth	(z)					
	(2)	Pore pressure (U _e) ve	rsus time (t)					
	(3)	Pore pressure (U _e) tir	ne factor o	f conso	lidati	on (T _v)			
	(4)	All of the above	e							
35.		nturated sand become al to :	mes "	quick" or "	alive" v	when	the hydraulic gr	radient i	s approximately	
	(1)	zero (0)	(2)	minus on	ne (−1)	(3)	one (1)	(4)	Infinity (∞)	
36.	Terz	zaghi demonstrat	ed the	spring ana	alogy tl	neory	to understand	the med	chanics of :	
	(1)	Compaction	(2)	Consolida	ation	(3)	Seepage	(4)	Permeability	
37.	Stati	ic penetration tes	t is co	vered unde	er whic	h IS a	code ?			
	(1)	IS 1888 : 1982			(2)	IS 49	968 (P3) 1987			
	(3)	IS 2131 : 1981			(4)	IS 2	720 (P4) 1985			
38.	A pile foundation is used when :									
	(1) (3)	The loads are h Both (1) and (2	_		(2) (4)		stratum near gi her (1) nor (2)	ound s	urface is weak	
39.	Clay mineral kaolinite is formed due to chemical weathering of :									
	(1)	Garnet	(2)	Quartz		(3)	Feld spar	(4)	Sillimanite	
40.		per Indian stand mer and its fallin						ve valu	es of weight of	
	(1)	26 N and 310 n	nm		(2)	30.3	N and 350 mm	l		
	(3)	48.9 N and 450	mm		(4)	60 N	I and 400 mm			
41.	As p	er Terzaghi theo	–– ry, N _c ,	, N _a and N	_r are kı	nown	as:	,	· · · · · · · · · · · · · · · · · · ·	
	(1)	Shear strength		•	(2)		h pressure coeff	ficients		
	(3)	Bearing capacit	y facto	ors	(4)	Com	paction factors			

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

13 SO₆ A

42. For obtaining allowable load from single pile load test (dop: IS 2911-P1-1964) data, which of the following criteria is applicable:

- 50% of ultimate load at which total settlement amounts to one tenth of the file (1)diameter
- $\frac{2}{3}$ of the load which causes total settlement of 12 mm·
- $\frac{2}{3}$ of the load which causes total settlement of 6 mm (3)
- (4)All of the above

The degree of disturbance of sample which is measured in terms of Area ratio 'Ar' is **43**. defined as:

(1)
$$Ar = \frac{Ao - Ai}{Ai} \times 100$$

(1)
$$Ar = \frac{Ao - Ai}{Ai} \times 100$$
 (2) $Ar = \frac{Ao + Ai}{Ai} \times 100$

(3)
$$Ar = \frac{Ao \times Ai}{Ai} \times 100$$
 (4) None of the above

44. Match List - I with List - II, and select correct answer using codes given below :

List - I

Pycnometer (a)

Classification of fine grained soil (i)

List - II

Core cutter (b)

(ii) Grain size analysis

Plasticity chart (c)

- (iii) Field density
- Mechanical sieve analysis
- (iv) Specific gravity

Codes:

- (a) (b) (c) (d)
- (1)(iv) (ii) (i) (iii)
- (2)(ii)(iii) (i)(iv)
- (3)(iv) (iii) (i) (ii)
- (4)(ii) (iv) (i) (iii)

SO ₆				1	4				F		
45.	A group of 4 piles with two piles in a row were driven into a soft clay extending from ground level to a great depth. The piles were placed 90 cm c/c with a pile diamete 30 cm and length 8 m. The UCS (Unconfined Compressive Strength) of soft clay i 60 kPa. Compute allowable load on pile group (Assuming block failure) for a factor of safety 2 - 5?										
	(1)	1280 kN	(2)	1180 kN	(3)	1380 kN	(4)	1420 kN			
46.	Site A and site B had the same soil with single drainage. 8 m thick clay layer of site A too 1 year to achieve 50% degree of consolidation. To achieve the same degree of consolidation at site B having 16 m thick layer, the time required is:										
	(1)	4 yr	(2)	1 yr	(3)	16 yr	(4)	2 yr			
47.	The maximum shear stress under the centre of a continuous strip occurs at what depth beneath the centre? (If 'B' is width of the strip)										
	(1)	В	(2)	$\frac{B}{2}$	(3)	$\frac{3}{4}$ B	(4)	2B			
48.	The standard penetration test is useful to measure :										
	(1)	consolidation	characte	eristics of soft	clays						
	(2)	shear strength	of sand	ls				•			
	(3)	consistency of	f clays								
	(4)	none of the al	oove								
49.	The	shape of the hy	drograp	h of runoff is	affected	by:					
	(1)	The intensity	of the st	orm	(2)	The duration	n of the st	orm			
	(3)	The real distri	ibution o	of the storm	(4)	All the abov	e				
50.	The	uplift pressure	on the f	ace of a draina	ge galler	y in a dam is	equal to		_		
	(1) hydrostatic pressure at toe										
	(2)	hydrostatic pr	ressure a	t heel							
	(3) two-third of hydrostatic pressure at heel plus one-third of hydrostatic pressure at heel										
	(4)	none of the al	oove								

A			15	SO6							
51.	The	method of estimating high flo	od dischai	ge is :							
	(1)	By empirical formulae devel	oped for th	ne region							
	(2)	By applying rational formul	ae								
	(3)	By flood frequency studies		•							
	(4)	All of the above									
52.	The	The flow-mass curve is a graphical representation of :									
	(1)	(1) Cumulative discharge and time									
	(2)	(2) Discharge and percentage probability of flow being equalled or exceeded									
	(3)	3) Cumulative discharge, volume and time in chronological order									
	(4)										
53.		at does the Gumbel's distributi magnitude of a flood with a re		require of the annual flood series to estimate od of T years ?							
	(1)	mean value	(2)	length of record							
	(3)	standard deviation	(4)	all of the above							
54.	The	percentage of the total sedime	ent flow de	epositing in the reservoir is called its :							
	(1)	Capacity inflow ratio	(2)	Sediment coefficient							
	(3)										
55.		relation between duty D in he s is given by :	ctares/cu.1	m. depth of water Δ in mt. and base period in							
	(1) $\Delta = 8.64 \text{ B/D}$		(2)	$\Delta = 8.64 \text{ D/B}$							
	(3)	$\Delta = 8.64 \text{ B}$	(4)	None of the above							

500								10				Ι
56.	Traj	effic	iency	of a st	torage	reserv	oir is	defii	ned as	ratio of :		
	(1)	Tot		ual se ervoir		nt inflo	w					
	(2)				<u> </u>	sited in flow in		_ <u>-</u>				
	(3)	Tota				nt depo				voir		
	(4)	Non	e of t	he abo	ove							
57.	Mat	Match the List - I with List - II										
		List - I							List	- II		
	(a)						(i)	North and central India				
	(b)	Dicken's formula					(ii)	Maharashtra state				
	(c)	Ryvis formula					(iii)	USA				
	(d)	•					(iv)	Sou	th Ind	ia		
	Cod	es:										
		(a)	(b)	(c)	(d)							
	(1)	(ii)	(i)	(iv)	(iii)							
	(2)	(iii)	(ii)	(iv)	(i)							
	(3)	(ii)	(i)	(iii)	(iv)							
	(4)	(i)	(iii)	(ii)	(iv)							
58.	For	high c	gee s	pillwa	y He	≈ Hd a	nd C	d is fo	ound t	o be :		
	(1)	1.00			(2)	2.00			(3)	2.20	(4)	1.33
 59.	Pres	ence o	of tail	water	in a g	gravity	dam	:				
	(a)	incre	eases	the pr	incipa	ıl stress	S	(b)	decreases the principal stress			
	(a) increases the principal stress(b) decreases the principal stress(c) increases the shear stress(d) decreases the shear stress									r stress		
	` '	correc	ct ans	wer is	:			. ,				
	(1)	(a) a	and (c)	(2)	(a) ar	nd (đ)	(3)	(b) and (c)	(4)	(b) and (d)

A			17	SO							
60.	Wha	at affects the shape of the hydrogra	ph ?								
	(1)	non-uniform areal distribution of	rain	ıfall							
	(2)	varying rainfall intensity									
	(3)	shape of the basin									
	(4)	all the above factors		•							
61.	Whe	en a ship enters sea from a river on	e can	n expect it :							
	(1)	to rise a little									
	(2)	(2) to sink a little									
	(3)	(3) to remain at the same level of draft									
	(4)										
62.	An	Acquifer confined at the bottom bu	t ope	en at the top is known as :							
	(1)	acquiclude	(2)	unconfined acquifer							
	(3)	semi confined acquifer	(4)	none of the above							
63.		ich of the following pollutant gase anic matter in biological waste proc	-	produced due to anaerobic decomposition of							
	(1)	Carbon-di-oxide (CO ₂)	(2)	Sulphur-di-oxide (SO ₂)							
	(3)	Carbon-mono-oxide (CO)	(4)	Hydrogen sulphide (H ₂ S)							
64.	The	e chemical characterization of solid	wast	te includes :							
	(1)	Proximate and ultimate analysis	(2)	Density							
	(3)	Moisture content	(4)	None of the above							
65.		en, Iron and Manganese are prese shall be removed by :	nt in	combination with organic matter in wate							
	(a)	Aeration	(b)	Coagulation							
	(c)	Addition of lime	(d)	Addition of chlorine							
	(1)	(a) only (2) (b) only		(3) (a) and (b) (4) (c) and (d)							

SO ₆					18				A		
66.		colour of wate eed :	r for do	mestic su	pplies (on star	ndard platinum	cobalt :	scale should not		
	(1)	0 - 5 PPM	(2)	5 - 10 P	PM	(3)	10 - 20 PPM	(4)	20 - 50 PPM		
67.	0.2 1								ocity of flow is		
	(1)	12 m	(2)	32 m		(3)	72 m	(4)	82 m		
68.	Acc	eptable noise le	vel for 1	esidential	and b	usines	s urban areas as	per IS	4954-1968 is :		
	(1)	25 - 35 dB	(2)	40 - 50 0	dВ	(3)	50 - 60 dB	(4)	70 - 80 dB		
 69.	Follo	owing instrume	nts are	used to m	neasure	Turbi	dity characterist	ics of w	vater :		
•	(a)	Jackson's Tur	bidimet	er	(b)	Bayl	is Turbidimeter		•		
	(c)	c) Nephelometer				Ratio	o Turbidimeter				
	(1)	(a) and (b) on	ly		(2)	(a), ((b) and (d) only				
	(3)	(c) only			(4)	All ((a), (b), (c) and (d)			
70.	Decl	nlorination of w	ater is	achieved l	by addi	ng :					
	(a)	Sodium thios	ulphate		(b)	Sodi	um sulphite				
	(c)	Sodium hexa	metapho	osphate	(d)	Sodi	um bisulphate		-		
	(1)	Only (a) and	(c)		(2)	only	(b)				
	(3)	Only (c)			(4)	(a), ((b) and (d)				
71.	The solubility of oxygen in sewage when compared to its solubility in distilled water is :										
	(1)	85%	(2)	95%		(3)	99%	(4)	99.9%		

A					19				SO6	
72.	Polli	utant Standard In	dex (PSI) value g	greate	r than	100 upto 199, o	denotes	s the air quality	
	(1)	Good	(2)	Moderate		(3)	Unhealthful	(4)	Hazardous	
73.	The	chemical compou	ınds v	which are re	espon	sible f	or production o	of photo	ochemical smog	
	(1)	Hydrocarbons			(2)	Nitro	ogen oxide			
	(3)	Both (1) and (2)			(4)	None	e of the above			
74.	A 50	A 50 μm size particle is removed from gas by :								
	(1)	Gravity settling	cham	ber	(2)	Cent	rifugal collector			
	(3)	Wet scrubber			(4)	Fabr	ic filter			
75.	BOI) (Bio-chemical Ox	ygen	Demand) te	st is c	arried	out for 5 days at	a const	ant temperature	
	(1)	10°C	(2)	37°C		(3)	25°C	(4)	20°C	
76.	Slow sand filter removes bacteria to as much as :									
	(1)	80 - 90%			(2)	90 -	95%			
	(3)	98 - 99%			(4)	None	e of the above			
77.	The	unit for measurin	g the	frequency o	of sou	nd is :				
	(1)	decibel (dB)			(2)	hertz	z (Hz)			
	(3)	doboson unit (D	u)		(4)	none	of the above			
78.	Desi	re lines are plotte	d in :							
	(1)	Accident studies	5		(2)	Spee	d studies			
	(3)	Origin and desti	inatio	n studies	(4)	Traff	ic volume studi	es		

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK

20

 \mathbf{A}

SO6

79.	Where 'p' is the pressure sustained in $\frac{kg}{cm^2}$ and ' Δ ' is deflection in cm, then with reference to rigid pavement the modulus of subgrade reaction is given by :											
	(1)	$\frac{p}{\Delta}$	(2)	$\frac{2p}{\Delta}$		(3)	$\frac{\Delta}{p}$	(4)	None of these			
80.	Max	kimum equivalent	single	e wheel loa	d as p	er IRC	C is:					
	(1)	8160 kg	(2)	4080 kg		(3)	2040 kg	(4)	1020 kg			
81.	In t	raffic design, PCU	J mea	ns :				V - L				
	(1)	Passenger Class	Unit		(2)	Pass	enger Catego:	ry Unit				
	(3)	Passenger Car I	Unit		(4)	none	e of the above					
82.	On a right angled road intersection with two-way traffic, the total number of conflipoints are :											
	(1)	22	(2)	24		(3)	26	(4)	28			
83.	Con	npared to a level 1	road,	on a descer	nding (grade	the stopping s	sight dista	ance is :			
	(1)	Less			(2)	Mor	e					
	(3)	Same			(4)	Dep	ending on a s	peed				
84.	'Sto	p' sign is a :	<u>-</u>									
	(1)	Warning sign			(2)	Info	rmatory sign					
	(3)	Regulatory sign			(4)	Non	e of these					

A					21					SO6	
85.	Whi	ch of the followir	ng sha	pes is pr	eferred ir	vall	ey curve ?				
	(1)	Spiral			(2)	Len	nniscate				
	(3)	Cubic parabola			(4)	Sim	ple parabola				
86.	Map	is a graphical re	presei	ntation o	of the feat	ures	on small scale	as pro	ject	ed on a :	
	(1)	horizontal plan	e		(2)	hori	zontal line				
	(3)	plane parallel to	o feati	ıre	(4)	in a	ny plane				
87.	If N	is number of si	des of	a close	d travers	e, the	en the sum of	f includ	ded	angles should	
	(1)	$(2N+4)\times90^{\circ}$	(2)	(2N – 4	1)×90°	(3)	360°	(4	1)	$(2N \pm 4) \times 90^{\circ}$	
88.	The tension at which the effect of pull is neutralised by the effect of sag is known as :										
	(1)	appropriate ten	sion		(2)	neu	tral tension				
	(3)	equal tension			(4)	nori	nal tension				
89.		nain of nominal l sured with this d									
	(1)	294.03 hectares	(2)	300.03	hectares	(3)	306.03 hecta	ares (4	l)	300 hectares	
90.	1.35	The R.L. of the ground level is 100m. The levelling staff reading on the ground surface is 1.355m. The staff reading 2.355m is recorded when the levelling staff is held inverted touching its bottom to the base of chajja. The height of chajja from the ground will be:									
	(1)	103.071 m	(2)	1.0 m		(3)	101.00 m	(4	:)	3.71 m	

SO6	•				22				I		
91.		is the radius curve is give		ular curve	and φ	is the	deflection angl	and is concerned with only : mental errors om errors	angent length c		
	(1)	R tan φ/2	(2)	R tan φ		(3)	R tan φ/4	(4)	R tan φ/8		
92.	Pred	cision represe	nts repeat	ability of a	meası	ıreme	nt and is conce	rned wi	th only :		
	(1)	Natural err	ors		(2)	Inst	rumental error	s			
	(3)	Personal er	rors		(4)	Ran	dom errors				
93.	Terp	pentine Oil is	used in p	aints as a :							
	(1)	Base	(2)	Carrier		(3)	Thinner	(4)	Pigment		
94.		four essentia	al constitu	ents of ord	linary	portla	and cement are	in orde	er of decreasing		
	(1)	Lime, Silica	, Alumina	and Iron o	oxides						
	(2) Silica, Alumina, Iron oxides and Lime										
	(3) Alumina, Silica, Lime and Iron oxides										
	(4) Iron oxides, Alumina, Lime and Silica										
95.	Ass	` '	National l		de of I	ndia r	ecommends a r	ninimun	n frontage of 6n		
	Rea	soning (R ₁) :		s the forma ents accider		blind	corners at the i	ntersecti	ion of the street		
	Rea	soning (R ₂) :	It prevent	s the buildi	ing fro	m dus	st and noise of	the stree	t.		
	Whi	ch of the foll	owing sta	tements is c	correct	?					
	(1)	A, R ₁ and of A.	R ₂ are tru	e. R ₁ is ir	correc	et expl	lanation and R	is corr	ect explanation		
	(2)	A is true.	$oldsymbol{R_1}$ and $oldsymbol{R_2}$	are incorre	ect.						
	(3)	A, R ₁ and l	R ₂ are true	e. But R ₁ a	nd R ₂	are n	ot correct expla	ınations	of A.		
	(4)	A , R ₁ and l	R ₂ are true	e. R₁ and I	R ₂ are	correc	et explanations	of A.			

A					23					SO6			
96.	Quantities of wood work are computed generally in terms of :												
	(1)	Numbers	pers			Numbers and sizes							
	(3) Area in square meters (4)						Volume in cubic meters						
97.		average water a l be limited to :	absorpt	ion as an a	ccepta	ince ci	riteria	for bricks	highe	r than class 12.5			
	(1)	20%	(2)	10%		(3)	15%		(4)	8 %			
98.	Fina	l setting time of 60 minutes	Ordina (2)	ary Portland		ent is	not m	ore than :	tes (4)	300 minutes			
99.	The	durability and g	loss of	a paint is :									
	(1)	Not related to	PVCN		(2)	Dire	ctly p	roportiona	ıl to PV	VCN			
	(3)	Inversely prop	ortiona	l to PVCN	(4)	Bala	nced	when PV0	CN = 0				
100 .	Wha	at is the ideal ter	nperati	ire for the p	promo	otion c	of alka	li aggrega	te reac	tion ?			
	(1)	20°C - 40°C	(2)	25°C - 50°	°C	(3)	10°C	C - 38°C	(4)	18°C - 38°C			

SO₆

24

Α

सूचना — (पृष्ठ 1 वरून पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतःबरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

Pick out the correct word to fill in the blan	αk	ın	la	b	e	the	in	11	fi	to	word	correct	the	out	Pick
---	----	----	----	---	---	-----	----	----	----	----	------	---------	-----	-----	------

Q.No. 201. I congratulate you ______ your grand success.

(1) for

(2) at

(3) on

(4) about

ह्या प्रश्नाचे योग्य उत्तर ''(3) on'' असे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल. यास्तव खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक ''(3)'' हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

प्र. क्र. 201. 1 2 4

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कञ्च्या कामासाठी जागा /SPACE FOR ROUGH WORK