प्रश्नपुस्तिका क्रमांक BOOKLET No.

Code: V01

केंद्राची संकेताक्षरे

परीक्षा दिः १५ व १६ डिसेंबर २०१२

एकण गुण : 200

शेवटचा अंक

स्थापत्य अभियांत्रिकी

वेळ : 2 (दोन) तास

पेपर - 11 सुचना

- सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकड्न लगेच बदल्न घ्यावी. परीक्षा-क्रमांक
- आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.
- वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सुचनेप्रमाणे न विसरता नमुद करावा
- या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमीर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मुल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची अचक उत्तरेच उत्तरपत्रिकेत नमुद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नप्रस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरुद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

16 पर्यवेक्षकाच्या

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

THE PARTY OF THE P

the way is the property of the companies of the state of the same of the same

CONTRACTOR DISTRICT AND ASSESSMENT AND ASSESSMENT

A

(3)

1.	A survey which consists of fixed star, is known as	observations of the heavenly bodies such as Sun or any	y
	(1) Celestial Survey	(2) Astrological Survey	

2. If the radius of simple circular curve is 300 m and intersection angle between two straight lines is 120°, the tangent length of curve is

(4)

Astronomical Survey

Heaven Survey

- (1) 173·105 m (2) 174·305 m (3) 173·205 m (4) 175·050 m
- 3. In the change point procedure, change point is the point of
 - (1) the initial position of dumpy level.
 - (2) the portion of staff where instrument is shifted.
 - (3) the final position of dumpy level.
 - (4) None of the above
- 4. The process of establishing number of intermediate points between two fixed end points on ground is known as
 - (1) Ranging

(2) Offsets

(3) Station points

- (4) Auxiliary points
- 5. The latitude of a line of closed traverse is its length multiplied by
 - (1) tangent of reduced bearing
- (2) sine of reduced bearing
- (3) cosine of reduced bearing
- (4) secant of reduced bearing
- 6. When lines come close together in a contour map, it indicates
 - (1) Hill

(2) Reservoir

(3) Steep slope

(4) Flat slope

1.	In g	geodetical observations, the correcti	on for i	erraction is			
	(1)	subtractive to both the angle of e	levation	and the angle of depression			
	(2)	(2) additive to both the angle of elevation and the angle of depression					
	(3)	subtractive to the angle of elevat	ion and	additive to the angle of depression			
	(4)	additive to the angle of elevation	and su	btractive to the angle of depression			
8.				a vertical photograph. The focal length			
	(1)	40 m	(2)	4000 m			
	(3)	40 km	(4)	400 km			
9.		process of determining the location table is	on of th	e station (on the map) occupied by the			
	(1)	Intersection	(2)	Two-point problem			
	(3)	Resection	(4)	Traversing			
10.		area of irregular plotted figure oned as	an be	easily determined by using instrument			
	(1)	Pentagraph	(2)	Planimeter			
	(3)	Subtense bar	(4)	Vernier			
11.		case of a truly vertical photogracide?	aphic	survey, which of the following points			
	I.	Principal point					
	II.	Isocentre					
	III.	Plumb point					
	(1)	I and II only	(2)	I and III only			
	(3)	II and III only	(4)	I, II and III			
12	Measurement of discharge of river usually forms a part of						
12.	Mea	asurement of discharge of river usu	ially for	ins a part or			
12.	Mea (1)	asurement of discharge of river usu Topographic surveying	(2)	Hydrographic surveying			
12.							
12. 13.	(1) (3)	Topographic surveying	(2) (4)	Hydrographic surveying Route surveying			
	(1) (3)	Topographic surveying Geodetic surveying	(2) (4) sting of	Hydrographic surveying Route surveying the combination of			
	(1) (3) A to	Topographic surveying Geodetic surveying otal station is an instrument consis	(2) (4) sting of	Hydrographic surveying Route surveying the combination of			
	(1) (3) A to (1)	Topographic surveying Geodetic surveying otal station is an instrument consist prismatic compass, theodolite and	(2) (4) sting of d dump pass	Hydrographic surveying Route surveying the combination of y level			

14.	The	most	reliable	estimate	18

(1) Detailed estimate

- (2) Preliminary estimate
- (3) Plinth area estimate
- (4) None of these

15. While computing masonry work, no deductions are generally made for

- (1) opening each up to 0.10 sq. m
- (2) ends of beam up to 0.05 sq. m
- (3) bed plates and wall plates up to 10 cm
- (4) All the above

16. The estimated quantity of cement required per m³ in a compacted cement concrete of 1:2:4 nominal mix is

(1) 305 kg

(2) 330 kg

(3) 285 kg

(4) 255 kg

17. Identity correct statements from the following:

- a. Centre line method is the most common method for calculating the quantities of walls.
- b. Centre line method is suitable for determining quantities of walls which are curved in plan.
- c. Out-to-out and in-to-in method is the most common method for calculating quantities of walls.
- (1) a and b

(2) a and c

(3) a only

(4) b and c

18. Annual income from a property is ₹ 25,000. The capitalized value of this property for a prevailing rate of 12.5% interest is

(1) ₹ 5,00,000

(2) ₹ 2,00,000

(3) ₹ 2,50,000

(4) ₹ 3,12,000

SPACE FOR ROUGH WORK

6

A

19.	A property whose owner is in the absolute possession of the property, and the owner can utilise the same in any manner he likes subject to the rules and regulations of Govt. and local authorities is known as				
	(1) Leasehold property	(2) Saleable property			
	(3) Freehold property	(4) Absolute property			
20.	Which of the following docume notice?	ents will not be required for drafting the tender			
	(1) Nature of work and its locat	ion			
	(2) Estimated cost of the work				
	(3) Mode of submitting tender				
	(4) Schedule 'A' of the proposed	work			
21.	In case of beams, the ratio of brea				
	(1) 0.5 to 0.7	(2) 0.9 to 1.0			
	(3) 1·2 to 1·4	(4) 1.8 to 2.0			
22	Assertion (A): Rate analysis structure or bu	is carried out to work out the actual cost of the ailding.			
	Reason (R): Rate analysis i	s carried out to revise the schedule of rates.			
	State whether				
	(1) Both A and R are true	(2) A is true and R is false			
	(3) A is false and R is true	(4) Both A and R are false			
23.	Which value of asset will fetch m	ore money from market ?			
	(1) Distress value	(2) Monopoly value			
	(3) Sentimental value	(4) Potential value			

A	7				
24.	Main improvement of Indian Standard Soil Classification system over Unified Soil Classification system was				
	(1) division of fine-grained into four groups and inclusion of peat.				
	(2) division of fine-grained soil portion into six groups.				
	(3) division of fine-grained soil portion into six groups and inclusion of peat.				
	(4) division of fine-grained soil based on compressibility.				
25.	The maximum vertical stress occurs when the angle made by the polar ray attains a				
	value corresponding to value of $\frac{\mathbf{r}}{2}$ equal to				
	(1) 39° 13′ 53·5″ and 0·817 (2) 39° 13′ 53·5″ and 0·488				
	(3) 33° 33′ 33″ and 0·817 (4) 33° 33′ 33″ and 1·000				
10000					
26.	The shear strength of loamy soil depends upon				
	(1) internal friction				
	(2) cohesion				
	(3) both internal friction and cohesion				
	(4) neither internal friction nor cohesion				
27.	The mechanics of consolidation was demonstrated by Terzaghi by means of				
	(1) Newmark's influence chart (2) Spring analogy				
	(3) Isobar diagrams (4) Pressure bulb				
Soile	The state of the s				
28.	Bearing capacity of soil is <i>not</i> influenced by				

position of water table

type of soil

(2)

(4)

(1)

shape and depth of footing

(3) overcoming load on footing

29.		structure is required to produce.				
	(1) active earth pressure					
•	(2) passive earth pressure	wouth magazines				
	(3) both active and passive e	earth pressures				
	(4) at rest pressure					
30.	When the allowable soil press foundation is	ure is low or building loads are heavy, suitable type of				
	(1) Strap footing	(2) Raft footing				
	(3) Spread footing	(4) Combined footing				
31.	effective overburden pressure The laboratory tests on this str	tratum 5 m deep is underlain by hard rock. The average before and after construction was 25 KPa and 250 KPa. rata indicated: natural moisture content of 50%, specific f 54%. The consolidation settlement of this layer will be				
	(1) 0·4 m	(2) 0·8 m				
	(3) 1·6 m	(4) 2·0 m				
32.	(1) 50% load corresponding (2) $\frac{2}{3}$ of load corresponding	rom pile load test is calculated as to a settlement of 10% pile diameter to a settlement of 12 mm to a settlement of 25 mm				
33.		red in situations where the soil flow into the excavated can be removed.				
	(1) slower	(2) faster				
	(3) initially faster	(4) initially slower				
SPA	(3) initially faster CE FOR ROUGH WORK	(4) initially slower				

A			9	V01			
34.	Sur	face tension is a phenomenon due	to				
	(1)	(1) cohesion only (2) viscous force					
	(2)						
	(3)	adhesion between liquid and soli	d molec	ules			
	(4)	difference in magnitude between	the for	ces due to adhesion and cohesion			
35.		object weighs 100 N in air and 7	5 N in	water when fully submerged in it. The			
	(1)	4.0	(2)	4.5			
	(3)	2.5	(4)	1.25			
36.	A fl	ow of fluid has diverging straight	streaml	ines. If the flow is steady, the flow			
	(1)	is a uniform flow with local accel	leration				
	(2)	has convective normal acceleration	on				
	(3)	has convective tangential acceler	ation				
	(4)	(4) has convective normal as well as tangential accelerations					
37.		The head over a 90° V-notch increases from 0.20 m to 0.40 m. The ratio of the new discharge to the original discharge is					
	(1)	1.414	(2)	2.000			
	(3)	4.000	(4)	more than 4.000			
38.	For a given open channel carrying a certain discharge, the critical depth depends on						
	(1)	the geometry of the channel	(2)	the viscosity of the liquid			
	(3)	the roughness of the channel	(4)	the longitudinal slope of the channel			
39.	In f	low through pipe bends, the press	ures on	inner and outer radii			
	(1)	do not vary and are same as at o					
	(2)	vary, it being more on the inner	one				
	(3)	are different; pressure increases radius	with in	acrease in radius and is more on outer			

(4)

stand at same level, increasing towards centre

- 40. The fluid flow in the model and the prototype will be dynamically similar if
 - (1) the forces in the two systems are same
 - (2) the two systems are geometrically similar
 - (3) the two systems are kinematically similar
 - (4) the forces at similar points in the two systems have same ratio throughout the flow field
- 41. The main function of the surge tank is to
 - (1) restrict the water hammer effects to small length of penstock
 - (2) provide a free water surface near turbines
 - (3) act as a reservoir
 - (4) protect the penstock from bursting
- **42.** In all reaction turbines, the following conditions should be satisfied for maximum efficiency:
 - (1) The velocity of whirl at entrance must be zero
 - (2) The velocity of flow at outlet must zero
 - (3) Velocity of whirl at outlet must be zero
 - (4) Velocity of flow at entrance must be zero
- 43. In centrifugal pump, the inlet angle will be designed to have
 - (1) relative velocity vector in radial direction
 - (2) absolute velocity vector in radial direction
 - (3) velocity of flow to be zero
 - (4) peripheral velocity to be zero

A	WWW.OHKarshelldure.com (ALL)
44.	In a hydrological cycle, the average residence time of water in the global (1) atmospheric moisture is larger than that in the global rivers (2) oceans is smaller than that of the global groundwater (3) rivers is larger than that of the global groundwater (4) oceans is larger than that of the global groundwater
45.	An isohyet is a line joining points having (1) equal evaporation value (2) equal barometric pressure (3) equal height above the MSL (4) equal rainfall depth in a given duration
46.	Anticyclone is a (1) low pressure zone that occurs in the northern hemisphere only (2) high pressure zone with moderate winds (3) zone of low pressure with clockwise winds in the northern hemisphere (4) zone of low pressure with anticlockwise winds in the northern hemisphere
47.	Hydrograph is a graph which shows the variation of discharge with (1) rainfall (2) time (3) runoff coefficient (4) rainfall excess
48.	If the maximum depth of a 50 years – 15h rainfall depth at Bhubaneshwar is 260 mm, the 50 year-3h-maximum rainfall depth at the same place is (1) < 260 mm (2) > 260 mm (3) = 260 mm (4) None of the above
49.	A catchment was found to have a ϕ -index of 0.6 cm/h in winter season. If a rainfall of 3 cm occurs in that season at a uniform rate in a 6 h storm, the resulting direct runoff is (1) 0.6 cm (2) -0.6 cm

(3) 0 cm

(4) 6.6 cm

50. Indicate the *incorrect* statement out of following four statements in which PET stands for Potential Evapotranspiration :

(1) PET depends essentially on climatic factors and is not critically dependent on soil and plant factors.

(2) PET is same as the consumptive use of an irrigated crop.

- (3) Decrease in PET of an area on the basis of mean annual value reflects an increase in runoff.
- (4) The ratio of PET to lake evaporation is always greater than unity.

V01		www.orrikarsheriadi	2	A A	
51.	The process by which plants dissipate water from the surface of their leaves, st and trunks in known as				
	(1) evaporation		(2)	evapo-transpiration	
	(3)	delta	(4)	conjunctive use	
52.	Mat	ch the following lists:	S. No.	The second of the second of the	
		List I (Plot of)		List II (Name)	
	a.	Accumulated precipitation vs time in chronological order	I.	Hydrograph	
	b.	Rainfall intensity vs time	II.	Hyetograph	
	c.	Stream flow vs time in chronological order	III.	Flow-duration curve	
	d.	Steam discharge vs percent time the flow is equalled or exceeded	IV.	Mass curve of rainfall	
	(1)	a b c d IV II I III IV II III I	at ew	near the during a state of the	
	(3) (4)	II IV II III I III		es the application and about the second	
53.	If a	soil has an infiltration capacity of f	, actu	nal infiltration rate f is given by	
	(1)		(2)	$f = i$ when $i > f_c$	
	(3)	$f = f_c$ when $i < f_c$	(4)	$f < f_c$ when $i > f$	
	(wh	ere i = Rainfall intensity in above of	ptions		
54.	The	chemical that is found to be most s	uitabl	e as water evaporation inhibitor is	
	(1)	ethyl alcohol	(2)	methyl alcohol	
	(3)	cetyl alcohol	(4)	butyl alcohol	

- A peak ordinate of a 4-h unit hydrograph for a catchment is 80 m³/s. The peak ordinate of an 8-h unit hydrograph for the same catchment will be
 - (1) $> 80 \text{ m}^3/\text{s}$

 $= 80 \text{ m}^3/\text{s}$

(3), $< 80 \text{ m}^3/\text{s}$

(4) Data inadequate

56.	Conjunctive use of water in a basin means					
	(1) the sum of evapo-transpiration and the amount of water used up in plant metabolism.					
	(2) combined use of surface and ground water resources.					
	(3) combined use of water for irrigation and hydropower generation.					
	(4) the sum of evapo-transpiration and infiltration losses.					
57.	The moisture content of the soil after free drainage removes most of the gravity water					
	is known as					
	(1) Wilting point (2) Available moisture					
	(3) Saturation capacity (4) Field capacity					
58.	If the duty on crop is reduced the irrigated area will be					
	(1) less (2) more					
	(3) does not depend on duty (4) None of the above					
59.	For the irrigation of a crop, the base period is 100 days and delta is 150 cm. Then the duty in ha/m ³ . s on the field is					
	$(1) 5.76 \qquad (2) 576 \qquad (3) 0.576 \qquad (4) 13.06$					
60.	The ratio of the quantity of water stored in the root zone of the crop to the quantity					
	of water actually delivered in the field is known as					
	(1) water conveyance efficiency (2) water application efficiency					
	(3) water use efficiency (4) water storage efficiency					
61.	Consumptive use for a particular crop is defined as					
	(1) water used by plant in transpiration only					
	(2) water used in evaporation from adjacent soils and plant leaves					
	(3) water used by plant in transpiration and evaporation also					
	(4) None of the above					
62.	Which of the statements given below are correct?					
	In the check-basin method of irrigation					
	a. the ridges interfere with the movement of tractor drawn implements.					
	b. considerable land is wasted by ridges and lateral channels.					
	c. the surface drainage is unhindered and as such, is excellent.					
	d. is unsuitable for growing crops which are sensitive to wet-soil conditions around their stem.					
	(1) a, b and c (2) a, b and d (3) a, c and d (4) b, c and d					

63.	The maximum application rate of sprinklers is limited by						
	(1) the infiltration capacity of the soil						
	(2) the prevailing wind velocity						
	(3) the quantity of water available						
	(4) the prevailing humidity and radiation						
64.	Leaching is the process in which	19 100					
	(1) water table is lowered by using pumps						
	(2) land is flooded with adequate depth of water to reduce salts in the top	layer					
	(3) land is flooded with adequate depth of water to reduce salts in the botto	om layer					
	(4) None of the above						
65.	An irrigant has the ionic concentrations of Na ⁺ , Ca ⁺² and Mg ⁺² as 30, 10 and respectively. The Sodium Adsorption Ratio (SAR) of this water is	8 meq/L					
	(1) 0.10 (2) 3.33 (3) 10 (4) 1.66	0 60 120					
66.	A land is known as waterlogged when						
	(1) gravity drainage has ceased						
	(2) permanent wilting point is reached						
	(3) the soil becomes completely saturated						
	(4) capillary fringe reaches the root zone of the plants						
67.	An aqueduct means	est de					
	(1) passing canal below the drainage						
	(2) passing canal below the road						
	(3) passing the drain through the canal						
	(4) passing the canal over the drainage						
68.	The uplift pressure is reduced in a gravity dam when a drainag	e gallery					
	with its drainage pipe system is provided.						
	(1) at all levels below the upstream level						
	(2) at all levels below the drainage gallery						
	(3) at all levels below the downstream level						
	(4) at the foundation level only						

A

69. In planning surveys for highways, which of the following studies is concerned with collection of details about the trend of population growth?

(1) Engineering studies

(2) Economic studies

(3) Financial studies

(4) Traffic studies

70. Which of the following statements gives the most suitable meaning of highway alignment?

(1) Fixing the direction of highway

(2) Deciding the radius of horizontal and vertical curves

(3) Determining the gradient of volley and summit curves

(4) Layout of the centre line of the highway on ground

71. Which of the following values is recommended by IRC as longitudinal friction coefficient for calculation of the stopping sight distance?

(1) 0.05 to 0.10

(2) 0.15 to 0.20

(3) 0.25 to 0.30

(4) 0.35 to 0.40

72. Which of the following terms represents cross slope provided to the road surface to drain off the rainwater?

(1) Shoulder

(2) Camber

(3) Kerb

(4) Drain

73. Width of the carriageway for single lane as standardised by IRC is

(1) 2·44 m

(2) 2·50 m

(3) 3.50 m

(4) 3.75 m

74. The mechanical widening of pavement required on horizontal curve along a two traffic lane road is given by which of the following equations?

(1)
$$W_m = l^2/2R$$

$$(2) \quad W_{\rm m} = l^2/R$$

(3)
$$W_m = 2l^2/R$$

$$(4) \quad W_{\rm m} = l^2/\sqrt{R}$$

75.		s not desirable to provide transition ves ?	n cur	ve on which of the following types of	
	(1)	Summit curves	(2)	Valley curves	
	(3)	Sharp curves	(4)	Steep curves	
76.		traffic engineering, which of the follerview method?	owing	g information is collected by road side	
	(1)	Origin and destination data	(2)	Traffic capacity data	
	(3)	Traffic volume data	(4)	Parking studies	
77.	СВІ	R test is developed to evaluate which	n of t	he following?	
	(1)	Shearing resistance of soil	(2)	Modulus of subgrade reaction	
	(3)	Stability of soil subgrade	(4)	Stress – strain relationship of soil	
78.	out (1) (3)	아이들은 아이는 나는 그 사는 가는 가는 가는 것 같아 나를 가는 것 같아 있다.	(2) (4)	c, which of the following tests is carried Crushing test Soundness test	
79.		delines of design of flexible pavemen codes ? IRC 29	t are (2)	recommended in which of the following IRC 37	
	(3)	IRC 58	(4)	IRC 86	
06				hade	
80.	and the same of	per IRC recommendations for design ement concrete used in the pavemen		ncrete pavements, the flexural strength ould <i>not</i> be less than	
	(1)	6 kg/cm ²	(2)	24 kg/cm ²	
		30 kg/cm ²		40 kg/cm ²	

More downloads and guidance @ 17

	aominada	41.14 9	il daile	_
www.	omkarshen	dure.co	om (AE	EE)

			water, under the road, from one side of
		(2)	Channel
(3)	Aqueduct	(4)	Culvert
If af	flux is more, scour depth		The state of the s
(1)	will be less	(2)	will be more
(3)	will have no effect on it	(4)	None of the above
IRC	recommendations for minimum wid	lth of	footpath on bridge is
(1)	1·0 m (2) 1·5 m	(3)	2·0 m (4) 2·5 m
IRC	standard loading for bridge designs	are	and the state of t
(1)	Class A, Class B, Class AB and Cl	ass 70)-R
(2)	Class A, Class B, Class AB and Cl	ass 90)-R
(3)	Class A, Class B, Class BB and Cl	ass 70	0-R
(4)	Class A, Class B, Class AA and Cl	ass 70)-R
The	type of bearing used on a bridge, de	epends	s on
(1)	Amount of movement of the bridge	e ends	
(2)	Temperature variations		
(3)	Load carried		and the first state of the confer
(4)	All of the above		Company of the second
Abu	tment piers are provided in multiple	e span	
(1)	Arch bridges	(2)	Submersible bridges
(3)	Temporary bridges	(4)	Suspension bridges
of ci			
	Head room	(2)	Free room
(3)	Highest water level	(4)	Free board
Cul	verts are provided for linear waterw	av uni	to maximum of
		27-3	12 m (4) 15 m
A th	nin wall used as a shield or protection	on aga	inst scouring action of stem is called
(1)	Baffle wall	(2)	Dwarf wall
(3)	Curtain wall	(4)	Any of the above
Flos	ats are used to measure		
1 100			
(1)	Discharge of stream	(2)	Velocity of stream
	the (1) (3) If af (1) (3) IRC (1) IRC (1) (2) (3) (4) The (1) (2) (3) (4) Abu (1) (3) The of cr as (1) (3) Cull (1) A th (1)	the roadway to the other side is known (1) Underground drain (3) Aqueduct If afflux is more, scour depth (1) will be less (3) will have no effect on it IRC recommendations for minimum wid (1) 1.0 m (2) 1.5 m IRC standard loading for bridge designs (1) Class A, Class B, Class AB and Cl (2) Class A, Class B, Class BB and Cl (3) Class A, Class B, Class BB and Cl (4) Class A, Class B, Class AA and Cl The type of bearing used on a bridge, de (1) Amount of movement of the bridge (2) Temperature variations (3) Load carried (4) All of the above Abutment piers are provided in multiple (1) Arch bridges (3) Temporary bridges The difference between the designed H of crown of road at its lower point, whet as (1) Head room (3) Highest water level Culverts are provided for linear waterw (1) 6 m (2) 9 m A thin wall used as a shield or protection (1) Baffle wall	(3) Aqueduct (4) If afflux is more, scour depth (1) will be less (2) (3) will have no effect on it (4) IRC recommendations for minimum width of (1) (1) 1.0 m (2) 1.5 m (3) IRC standard loading for bridge designs are (1) Class A, Class B, Class AB and Class 70 (2) Class A, Class B, Class AB and Class 70 (3) Class A, Class B, Class BB and Class 70 (4) Class A, Class B, Class AA and Class 70 (4) Class A, Class B, Class AA and Class 70 (5) Class A, Class B, Class AA and Class 70 (6) Class A, Class B, Class AA and Class 70 (7) The type of bearing used on a bridge, depends (1) Amount of movement of the bridge ends (2) Temperature variations (3) Load carried (4) All of the above Abutment piers are provided in multiple span (1) Arch bridges (2) (3) Temporary bridges (4) The difference between the designed H.F.L. a of crown of road at its lower point, whether on as (1) Head room (2) (3) Highest water level (4) Culverts are provided for linear waterway up (1) 6 m (2) 9 m (3) A thin wall used as a shield or protection aga (1) Baffle wall (2)

A

V01

91.	Which air pollutant is not included in National Ambient Air Quality Standards 2009?							
	(1)	Ozone	(2)	Benzene				
	(3)	Mercury	(4)	Arsenic				
92.	The fire demand for a population of 1.5 lakh as per the recommendation of IS 9668: 1990 is							
	(1)	1800 litre/min	(2)	3600 litre/min				
	(3)	5400 litre/min	. (4)	7200 litre/min				
93.	The following characteristics pertain to the sand filters in water treatment: a. The effective size of filter medium is 0.25 mm to 0.35 mm. b. Backwashing is carried out by air scouring followed by water washing. c. The suspended solids are removed at the surface on biofilm mat.							
	Which of these are related to slow sand filters?							
	(1)	a and b	*(2)	a, b and c				
	(3)	a and c	(4)	b and c				
94.		at are the Ambient Air Quanstrial and commercial areas		ds in respect of noise in daytime for				
	(1)	75, 65 dB(A) Leq.	(2)	75, 70 dB(A) Leq.				
	(3)	75, 55 dB(A) Leq.	(4)	65, 55 dB(A) Leq.				
95.	The following data pertain to a sewage sample at 20°C: Initial dissolved oxygen = 6 mg/L Final dissolved oxygen after 5 days = 3.5 mg/L							
	Dilution ratio = 0.02							
		BOD ₅ of the above sample a	t 20°C is					
	(1)	500 mg/L	(2)	125 mg/L				
	. (3)	175 mg/L	(4)	12·5 mg/L				

96.	Whi	ch of the following is attached grov	vth pro	ocess used for waste wa	ater treatment?
	(1)	Rotating Biological Contactor	(2)	Activated Sludge Prod	cess
	(3)	Aerated Lagoon	(4)	Waste Stabilization P	ond
97.	Whi	ch of the following pairs is/are corn	ectly 1	matched?	
	a.	Trickling filter - Attached growth	anaer	obic treatment system	
	b.	Activated sludge process - Suspen	ded gr	rowth aerobic treatmen	t system
	c.	Oxidation pond - Suspended grow	th aer	obic treatment system	
	d.	Oxidation ditch - Modified activat	ed slu	dge process	
	(1)	a, b and c	(2)	b, c and d	
	(3)	b and d	(4)	a, b, c and d	
99.	(1) (2) (3) (4)	tors that influence sedimentation p size, viscosity, density and temper surface overflow rate, detention ti inlet and outlet characteristics, de All the above the of the following statements are The burning of gasoline fuel emits	eature me pth of correct	of water settling t?	
	b.	Sulphur dioxide is formed from co			
	c.	The burning of tyres results in hy		HEROTE STORY METERS SEE	
	(1)	a and b	(2)	a and c	
	(3)	b and c	(4)	a, b and c	
100.		at is the standard for E. coli	as pe	r Drinking Water Qu	ality Standards
	(1)	10/100 mL	(2)	5/100 mL	
	(3)	0/100 mL or absent	(4)	1/100 mL	

सूचना - (पृष्ठ 1 वरुन पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82" यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतः बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

Pick	out	the	correct	word	to	fill	in	the	blank	

Q. No. 201. I congratulate you ______ your grand success.

(1) for (2) at (3) on (4) about

ह्या प्रश्नाचे योग्य उत्तर "(3) on" असे आहे. त्यामुळे या प्रश्नाचे उत्तर "(3)" होईल. यास्तव खालीलप्रमाणे प्र.क्र. 201 समोरील उत्तर-क्रमांक "3" हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

प्रश्न क्र. 201. (1) (2) (4)

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकिरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

